码迷,mamicode.com
首页 > 其他好文 > 详细

手把手,嘴对嘴,讲解UCOSII嵌入式操作系统的任务调度策略(五)

时间:2018-05-04 16:59:29      阅读:231      评论:0      收藏:0      [点我收藏+]

标签:turn   保存   false   storage   实例   有一个   cat   判断   run   

 

整个UCOSII嵌入式操作系统的任务调度策略便是如此,现在进行一个总结:

①某个任务在执行中,每隔一定周期发生滴答时钟中断,在中断中遍历整个任务链表,更新每个任务的延时时间,修改就绪状态。

②任务执行完毕后,进入延时函数,在延时函数中会把当前任务挂起(清空当前任务的就绪状态,使其进入未就绪状态),然后根据查表发找到在就绪任务中,优先级最高的那一个任务。

③找到新任务以后,人工强制发生一个中断,保存上个任务的堆栈信息,弹出下个任务的堆栈信息,同时更改PC指针,进行任务切换。

经过以上三个步骤,便可以完成任务的调度。

现在回到第一篇提出的那个问题:UCOSII到底是如何保证它的实时性的呢? 

如果任务的调度都是发生在当前任务进入延时之后,似乎操作系统根本无法自身的保障实时性。

比如一个优先级最低的任务由于某些处理非常耗费时间,它一直无法进入延时,导致无法进入任务切换,那么优先级高的任务反而是一只都无法被执行了……

同样在第一篇说过,UCOSII系统除了在当前任务进入延时函数会发生调度之外,还有别的时机会进行任务切换:

  1.当前任务进入了延时。

  2.当前任务被挂起。

  3.当前任务执行时,发生了某些中断。

 

第1点我们已经全部讲完,第2点非常好理解,我们现在看一个函数:OSTaskSuspend()

这个函数的作用是把某个任务挂起(也就是不进行调度),现在来分析一个实例:

有一个任务调用了这个函数:

void App1_task(void *pdata)
{
    while(1)
    {
        if (OS_ERR_NONE != OSTaskSuspend(OS_PRIO_SELF))
        {
            Dbg_SendStr("App1_task Suspend Error£?\r\n");
        }
        delay_ms(10);
    };
}

当前任务执行了红色代码之后,便会把自身挂起来,如果没有再别的地方对它进行激活,这个任务便永远也不会执行下去了。

深入分析OSTaskSuspend函数:

INT8U  OSTaskSuspend (INT8U prio)
{
    BOOLEAN    self;
    OS_TCB    *ptcb;
    INT8U      y;
#if OS_CRITICAL_METHOD == 3u                     /* Allocate storage for CPU status register           */
    OS_CPU_SR  cpu_sr = 0u;
#endif



#if OS_ARG_CHK_EN > 0u
    if (prio == OS_TASK_IDLE_PRIO) {                            /* Not allowed to suspend idle task    */
        return (OS_ERR_TASK_SUSPEND_IDLE);
    }
    if (prio >= OS_LOWEST_PRIO) {                               /* Task priority valid ?               */
        if (prio != OS_PRIO_SELF) {
            return (OS_ERR_PRIO_INVALID);
        }
    }
#endif
    OS_ENTER_CRITICAL();
    if (prio == OS_PRIO_SELF) {                                 /* See if suspend SELF                 */
        prio = OSTCBCur->OSTCBPrio;
        self = OS_TRUE;
    } else if (prio == OSTCBCur->OSTCBPrio) {                   /* See if suspending self              */
        self = OS_TRUE;
    } else {
        self = OS_FALSE;                                        /* No suspending another task          */
    }
    ptcb = OSTCBPrioTbl[prio];
    if (ptcb == (OS_TCB *)0) {                                  /* Task to suspend must exist          */
        OS_EXIT_CRITICAL();
        return (OS_ERR_TASK_SUSPEND_PRIO);
    }
    if (ptcb == OS_TCB_RESERVED) {                              /* See if assigned to Mutex            */
        OS_EXIT_CRITICAL();
        return (OS_ERR_TASK_NOT_EXIST);
    }
    y            = ptcb->OSTCBY;
    OSRdyTbl[y] &= (OS_PRIO)~ptcb->OSTCBBitX;                   /* Make task not ready                 */
    if (OSRdyTbl[y] == 0u) {
        OSRdyGrp &= (OS_PRIO)~ptcb->OSTCBBitY;
    }
    ptcb->OSTCBStat |= OS_STAT_SUSPEND;                         /* Status of task is ‘SUSPENDED‘       */
    OS_EXIT_CRITICAL();
    if (self == OS_TRUE) {                                      /* Context switch only if SELF         */
        OS_Sched();                                             /* Find new highest priority task      */
    }
    return (OS_ERR_NONE);
}

直接从红色代码部分开始看,他首先判断一下我要挂起的任务是不是自己,现在我们传的参数就是OS_PRIO_SELF,所有它应该执行第一个if判断。

在这个if判断中保存了一下需要挂起的任务的优先级,然后用蓝色代码判断一下需要挂起的任务是否存在(由于我们挂起的是自身,自身肯定是存在的,但是这并不表示这个判断多余,因为如果是一个优先级为1的任务调用这个函数去挂起一个优先级为2的任务,那判断一下还是很必要的)。

然后接下来的几句代码就不用再解释了,和任务进入延时函数把自己的就绪状态情况是一毛一样的处理。

直接看ptcb->OSTCBStat |= OS_STAT_SUSPEND这句代码,变量OSTCBStat 很容易理解,它表示当前任务的状态,整句代码的意义就是给当前任务设定一个已经被人工挂起了的状态,免得在任务调度的时候被调度出来(在滴答时钟中断中有这个变量的判断)。

这句代码以后:

    if (self == OS_TRUE) {                                      /* Context switch only if SELF         */
        OS_Sched();                                             /* Find new highest priority task      */
    }

 

这几句代码也已经很熟悉了,中间那个函数就是任务切换,先看看那个判断,如果我要挂起的是当前任务,那么就立即进行切换,如果挂起的是别的任务,那就不用切换,这个理解起来应该不难。

在理解的第一种切换时机的前提下,第二种任务切换的时机很好理解,但是第二种任务切换的时机仍然不能保证任务执行的实时性,如果低优先级的任务既不进入延时,也不挂起,高优先级的任务依然无法执行。

 

现在来看第三种,当中断发生时,任务切换……

在任务执行期间,发生频繁的中断必然就是滴答时钟中断,现在重新回到以前看过的那个中断服务函数:

void SysTick_Handler(void)
{
    if(delay_osrunning==1)                      //OS开始跑了,才执行正常的调度处理
    {
        OSIntEnter();                           //进入中断
        OSTimeTick();                           //调用ucos的时钟服务程序
        OSIntExit();                            //触发任务切换软中断
    }
}

 

这一次的重点不再是第二个函数,而是第一个和第三个函数:OSIntEnter,OSIntExit。

这两个函数是成对出现,从函数名便可看出,OSIntEnter是进入中断时候调用,OSIntExit是离开中断时候调用。

由于滴答时钟是周期性调用,因此这两个函数也是周期性被调用

OSIntEnter的定义如下:

void  OSIntEnter (void)
{
    if (OSRunning == OS_TRUE) {
        if (OSIntNesting < 255u) {
            OSIntNesting++;                      /* Increment ISR nesting level                        */
        }
    }
}

 

入口函数的定义很简单,就是对变量OSIntNesting执行加处理,表示我现在正在执行中断函数,如果发生了中断,或者有中断嵌套,那么这个变量肯定是大于1的,在系统的很多地方,都需要判断这个变量,因为很多地方都不能在中断中执行。

出口函数的定义就有些复杂了:

void  OSIntExit (void)
{
#if OS_CRITICAL_METHOD == 3u                               /* Allocate storage for CPU status register */
    OS_CPU_SR  cpu_sr = 0u;
#endif

    if (OSRunning == OS_TRUE) {
        OS_ENTER_CRITICAL();
        if (OSIntNesting > 0u) {                           /* Prevent OSIntNesting from wrapping       */
            OSIntNesting--;
        }
        if (OSIntNesting == 0u) {                          /* Reschedule only if all ISRs complete ... */
            if (OSLockNesting == 0u) {                     /* ... and not locked.                      */
                OS_SchedNew();
                OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
                if (OSPrioHighRdy != OSPrioCur) {          /* No Ctx Sw if current task is highest rdy */
#if OS_TASK_PROFILE_EN > 0u
                    OSTCBHighRdy->OSTCBCtxSwCtr++;         /* Inc. # of context switches to this task  */
#endif
                    OSCtxSwCtr++;                          /* Keep track of the number of ctx switches */
                    OSIntCtxSw();                          /* Perform interrupt level ctx switch       */
                }
            }
        }
        OS_EXIT_CRITICAL();
    }
}

 

直接从红色部分开始看,首先判断系统是否在运行,在系统运行的前提下,对变量OSIntNesting进行减处理。

当进入中断以后,调用入口函数,对变量OSIntNesting加1,中断内容处理完以后,对变量OSIntNesting减1,当变量OSIntNesting为0的时候,表示没有进行中断处理,这个时候才可以进行任务切换。

            if (OSLockNesting == 0u) {                     /* ... and not locked.                      */
                OS_SchedNew();
                OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
                if (OSPrioHighRdy != OSPrioCur) {          /* No Ctx Sw if current task is highest rdy */
#if OS_TASK_PROFILE_EN > 0u
                    OSTCBHighRdy->OSTCBCtxSwCtr++;         /* Inc. # of context switches to this task  */
#endif
                    OSCtxSwCtr++;                          /* Keep track of the number of ctx switches */
                    OSIntCtxSw();                          /* Perform interrupt level ctx switch       */
                }
            }

 

然后判断一下系统是否上锁,如果上锁了,任然不能进行调度。

当一切条件就绪以后,调用函数OS_SchedNew,这个函数也已经熟悉了,作用就是寻找在就绪任务中,优先级最高的那一个。

把优先级最高的任务保存在OSPrioHighRdy中,如果当前任务不等于优先级最高的任务,那么就调用系统函数OSIntCtxSw进行任务切换……

 

看到这里,应该能够回答那个问题了:如何保证系统的实时性?

void SysTick_Handler(void)
{
    if(delay_osrunning==1)                      //OS开始跑了,才执行正常的调度处理
    {
        OSIntEnter();                           //进入中断
        OSTimeTick();                           //调用ucos的时钟服务程序
        OSIntExit();                            //触发任务切换软中断
    }
}

 

在中断服务函数中,第二个函数负责更新任务就绪表,第三个任务负责切换任务,因为滴答中断是周期性发生的,所以任务切换也是周期性发生的。

当有一个优先级低的任务执行时,如果有优先级更高的任务就绪了,那么只要发生了一次滴答中断,任务就能被立即切换过去,延时只有一个滴答时钟的时间,如果定义的时钟周期是1ms,那么低优先级的任务最多也就能运行1ms,然后便会强行剥夺CPU的执行权限,转交给高优先级的任务。

由于存在这种机制,因此便能保证UCOSII系统任务的实时性。

 

完结

 

手把手,嘴对嘴,讲解UCOSII嵌入式操作系统的任务调度策略(五)

标签:turn   保存   false   storage   实例   有一个   cat   判断   run   

原文地址:https://www.cnblogs.com/han-bing/p/8990919.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!