码迷,mamicode.com
首页 > 其他好文 > 详细

tensorflow在文本处理中的使用——词袋

时间:2018-05-07 17:43:53      阅读:782      评论:0      收藏:0      [点我收藏+]

标签:机器   list   oss   rap   向量   cas   语言   hot   意义   

代码来源于:tensorflow机器学习实战指南(曾益强 译,2017年9月)——第七章:自然语言处理

代码地址:https://github.com/nfmcclure/tensorflow-cookbook

解决问题:使用“词袋”嵌入来进行垃圾短信的预测(使用逻辑回归算法)

步骤如下:

step1:导入需要的包

step2:准备数据集

step3:选择参数(每个文本保留多少单词数,最低词频是多少)

step4:构建词袋

step5:分割数据集

step6:构建图

step7:训练

step8:测试


step1:导入需要的包

import tensorflow as tf
import matplotlib.pyplot as plt
import os
import numpy as np
import csv
import string
import requests
import io
from zipfile import ZipFile
from tensorflow.contrib import learn
from tensorflow.python.framework import ops
ops.reset_default_graph()

# Start a graph session
sess = tf.Session()

step2:准备数据集

# Check if data was downloaded, otherwise download it and save for future use
save_file_name = os.path.join(temp,temp_spam_data.csv)
if os.path.isfile(save_file_name):
    text_data = []
    with open(save_file_name, r) as temp_output_file:
        reader = csv.reader(temp_output_file)
        for row in reader:
            text_data.append(row)
else:
    zip_url = http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip
    r = requests.get(zip_url)
    z = ZipFile(io.BytesIO(r.content))
    file = z.read(SMSSpamCollection)
    # Format Data
    text_data = file.decode()
    text_data = text_data.encode(ascii,errors=ignore)
    text_data = text_data.decode().split(\n)
    text_data = [x.split(\t) for x in text_data if len(x)>=1]
    
    # And write to csv
    with open(save_file_name, w) as temp_output_file:
        writer = csv.writer(temp_output_file)
        writer.writerows(text_data)

texts = [x[1] for x in text_data]
target = [x[0] for x in text_data]

# Relabel ‘spam‘ as 1, ‘ham‘ as 0
target = [1 if x==spam else 0 for x in target]

# Normalize text,为减少无意义的词汇,对文本进行规则化处理
# Lower case
texts = [x.lower() for x in texts]

# Remove punctuation
texts = [‘‘.join(c for c in x if c not in string.punctuation) for x in texts]

# Remove numbers
texts = [‘‘.join(c for c in x if c not in 0123456789) for x in texts]

# Trim extra whitespace
texts = [ .join(x.split()) for x in texts]

step3:选择参数

# Plot histogram of text lengths文本数据中的单词数的直方图
text_lengths = [len(x.split()) for x in texts]
text_lengths = [x for x in text_lengths if x < 50]
plt.hist(text_lengths, bins=25)
plt.title(Histogram of # of Words in Texts)

技术分享图片

step4:构建词袋

# Choose max text word length at 25,也可以设为30或者40
sentence_size = 25
min_word_freq = 3

# Setup vocabulary processor
vocab_processor = learn.preprocessing.VocabularyProcessor(sentence_size, min_frequency=min_word_freq)

# Have to fit transform to get length of unique words.
vocab_processor.fit_transform(texts)
embedding_size = len(vocab_processor.vocabulary_)

step5:分割数据集

# Split up data set into train/test
train_indices = np.random.choice(len(texts), round(len(texts)*0.8), replace=False)
test_indices = np.array(list(set(range(len(texts))) - set(train_indices)))
texts_train = [x for ix, x in enumerate(texts) if ix in train_indices]
texts_test = [x for ix, x in enumerate(texts) if ix in test_indices]
target_train = [x for ix, x in enumerate(target) if ix in train_indices]
target_test = [x for ix, x in enumerate(target) if ix in test_indices]

step6:构建图

step6.1 构建出文本的向量

# Setup Index Matrix for one-hot-encoding,使用该矩阵为每个单词查找稀疏向量
identity_mat = tf.diag(tf.ones(shape=[embedding_size]))

# Create variables for logistic regression
A = tf.Variable(tf.random_normal(shape=[embedding_size,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))

# Initialize placeholders
x_data = tf.placeholder(shape=[sentence_size], dtype=tf.int32)
y_target = tf.placeholder(shape=[1, 1], dtype=tf.float32)

# Text-Vocab Embedding,使用tf的嵌入查找函数来映射句子中的单词为单位矩阵的one-hot向量,再进行求和
# tf.nn.embedding_lookup(y,x)x为索引,找出y中对应索引的值
x_embed = tf.nn.embedding_lookup(identity_mat, x_data)
x_col_sums = tf.reduce_sum(x_embed, 0)

# Declare model operations
x_col_sums_2D = tf.expand_dims(x_col_sums, 0)

疑问:如何利用词袋将文本变成向量?

技术分享图片

step6.2 构建图

model_output = tf.add(tf.matmul(x_col_sums_2D, A), b)

# Declare loss function (Cross Entropy loss)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(model_output, y_target))

# Prediction operation
prediction = tf.sigmoid(model_output)

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.001)
train_step = my_opt.minimize(loss)

step7:训练

# Intitialize Variables
init = tf.initialize_all_variables()
sess.run(init)

# Start Logistic Regression
print(Starting Training Over {} Sentences..format(len(texts_train)))
loss_vec = []
train_acc_all = []
train_acc_avg = []
for ix, t in enumerate(vocab_processor.fit_transform(texts_train)):
    y_data = [[target_train[ix]]]
    
    
    sess.run(train_step, feed_dict={x_data: t, y_target: y_data})
    temp_loss = sess.run(loss, feed_dict={x_data: t, y_target: y_data})
    loss_vec.append(temp_loss)
    
    if (ix+1)%10==0:
        print(Training Observation # + str(ix+1) + : Loss =  + str(temp_loss))
        
    # Keep trailing average of past 50 observations accuracy
    # Get prediction of single observation
    [[temp_pred]] = sess.run(prediction, feed_dict={x_data:t, y_target:y_data})
    # Get True/False if prediction is accurate
    train_acc_temp = target_train[ix]==np.round(temp_pred)
    train_acc_all.append(train_acc_temp)
    if len(train_acc_all) >= 50:
        train_acc_avg.append(np.mean(train_acc_all[-50:]))

step8:测试

# Get test set accuracy
print(Getting Test Set Accuracy For {} Sentences..format(len(texts_test)))
test_acc_all = []
for ix, t in enumerate(vocab_processor.fit_transform(texts_test)):
    y_data = [[target_test[ix]]]
    
    if (ix+1)%50==0:
        print(Test Observation # + str(ix+1))    
    
    # Keep trailing average of past 50 observations accuracy
    # Get prediction of single observation
    [[temp_pred]] = sess.run(prediction, feed_dict={x_data:t, y_target:y_data})
    # Get True/False if prediction is accurate
    test_acc_temp = target_test[ix]==np.round(temp_pred)
    test_acc_all.append(test_acc_temp)

print(\nOverall Test Accuracy: {}.format(np.mean(test_acc_all)))

# Plot training accuracy over time
plt.plot(range(len(train_acc_avg)), train_acc_avg, k-, label=Train Accuracy)
plt.title(Avg Training Acc Over Past 50 Generations)
plt.xlabel(Generation)
plt.ylabel(Training Accuracy)
plt.show()

 

tensorflow在文本处理中的使用——词袋

标签:机器   list   oss   rap   向量   cas   语言   hot   意义   

原文地址:https://www.cnblogs.com/helloworld0604/p/9002972.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!