标签:split 统计 div one 打印 包括 上传文件 org ==
1. 以下关系型数据库中的表和数据,要求将其转换为适合于HBase存储的表并插入数据:
学生表(Student)(不包括最后一列)
学号(S_No) |
姓名(S_Name) |
性别(S_Sex) |
年龄(S_Age) |
课程(course) |
2015001 |
Zhangsan |
male |
23 |
|
2015003 |
Mary |
female |
22 |
|
2015003 |
Lisi |
male |
24 |
数学(Math)85 |
流程:1.开启dfs和hbase
验证是否成功开启
创建表,但是因为我在shell命令写的时候总会卡死,之后进程就直接被杀死了,所以下面我自己手写
2. 用Hadoop提供的HBase Shell命令完成相同任务:
hbase(main):008:0>list
hbase(main):009:0>scan ‘student‘
hbase(main):010:0>alter ‘student‘,{NAME=>‘course‘,VERSIONS=>3}
‘hbase(main):011:0>put ‘student‘,‘2015003;‘,‘course:Math‘,‘85‘
disable ‘student‘
count ‘student‘
truncate ‘student‘
3. 用Python编写WordCount程序任务
程序 |
WordCount |
输入 |
一个包含大量单词的文本文件 |
输出 |
文件中每个单词及其出现次数(频数),并按照单词字母顺序排序,每个单词和其频数占一行,单词和频数之间有间隔 |
流程:
1.创建mapper.py文件
cd /home/hadoop/wc
sudo gedit mapper.py
2.map函数
#!/usr/bin/env python import sys for i in stdin: i = i.strip() words = i.split() for word in words: print ‘%s\t%s‘ % (word,1)
3.reduce函数
#!/usr/bin/env python from operator import itemgetter import sys current_word = None current_count = 0 word = None for i in stdin: i = i.strip() word, count = i.split(‘\t‘,1) try: count = int(count) except ValueError: continue if current_word == word: current_count += count else: if current_word: print ‘%s\t%s‘ % (current_word, current_count) current_count = count current_word = word if current_word == word: print ‘%s\t%s‘ % (current_word, current_count)
4.创造reduce.py文件
cd /home/hadoop/wc
sudo gedit reducer.py
5.赋予权限及测试代码
chmod a+x /home/hadoop/mapper.py echo "foo foo quux labs foo bar quux" | /home/hadoop/wc/mapper.py echo "foo foo quux labs foo bar quux" | /home/hadoop/wc/mapper.py | sort -k1,1 | /home/hadoop/wc/reducer.p
6.下载文件上传
#上传 cd /home/hadoop/wc wget http://www.gutenberg.org/files/5000/5000-8.txt wget http://www.gutenberg.org/cache/epub/20417/pg20417.txt #下载 cd /usr/hadoop/wc hdfs dfs -put /home/hadoop/hadoop/gutenberg/*.txt /user/hadoop/input
以上在第七章PPT都有所描述。
标签:split 统计 div one 打印 包括 上传文件 org ==
原文地址:https://www.cnblogs.com/tiankongyiluozhiwu/p/9009982.html