码迷,mamicode.com
首页 > 其他好文 > 详细

卷积神经网络(CNN)的训练过程

时间:2018-05-09 15:01:44      阅读:14239      评论:0      收藏:0      [点我收藏+]

标签:计算   获得   方法   二层   png   block   src   进入   激活   

卷积神经网络的训练过程

卷积神经网络的训练过程分为两个阶段。第一个阶段是数据由低层次向高层次传播的阶段,即前向传播阶段。另外一个阶段是,当前向传播得出的结果与预期不相符时,将误差从高层次向底层次进行传播训练的阶段,即反向传播阶段。训练过程如图4-1所示。训练过程为:

1、网络进行权值的初始化;

2、输入数据经过卷积层、下采样层、全连接层的向前传播得到输出值;

3、求出网络的输出值与目标值之间的误差;

4、当误差大于我们的期望值时,将误差传回网络中,依次求得全连接层,下采样层,卷积层的误差。各层的误差可以理解为对于网络的总误差,网络应承担多少;当误差等于或小于我们的期望值时,结束训练。

5、根据求得误差进行权值更新。然后在进入到第二步。

技术分享图片

图4-1卷积神经网络的训练过程

1.1卷积神经网络的前向传播过程

在前向传播过程中,输入的图形数据经过多层卷积层的卷积和池化处理,提出特征向量,将特征向量传入全连接层中,得出分类识别的结果。当输出的结果与我们的期望值相符时,输出结果。

1.1.1卷积层的向前传播过程

卷积层的向前传播过程是,通过卷积核对输入数据进行卷积操作得到卷积操作。数据在实际的网络中的计算过程,我们以图3-4为例,介绍卷积层的向前传播过程。其中一个输入为15个神经元的图片,卷积核为2×2×1的网络,即卷积核的权值为W1,W2,W3,W4。那么卷积核对于输入数据的卷积过程,如下图4-2所示。卷积核采用步长为1的卷积方式,卷积整个输入图片,形成了局部感受野,然后与其进行卷积算法,即权值矩阵与图片的特征值进行加权和(再加上一个偏置量),然后通过激活函数得到输出。

技术分享图片

 

 图4-2图片深度为1,卷积层的向前传播过程

而在图3-4中,图片深度为2时,卷积层的向前传播过程如图4-3所示。输入的图片的深度为4×4×2,卷积核为2×2×2,向前传播过程为,求得第一层的数据与卷积核的第一层的权值的加权和,然后再求得第二层的数据与卷积核的第二层的权值的加权和,两层的加权和相加得到网络的输出。

技术分享图片

图4-3图片深度为2,卷积层的向前传播过程

1.1.2下采样层的向前传播过程

上一层(卷积层)提取的特征作为输入传到下采样层,通过下采样层的池化操作,降低数据的维度,可以避免过拟合。如图4-4中为常见的池化方式示意。最大池化方法也就是选取特征图中的最大值。均值池化则是求出特征图的平均值。随机池化方法则是先求出所有的特征值出现在该特征图中的概率,然后在来随机选取其中的一个概率作为该特征图的特征值,其中概率越大的选择的几率越大。

技术分享图片

 

图4-4池化操作示意图

1.1.3全连接层的向前传播过程

特征图进过卷积层和下采样层的特征提取之后,将提取出来的特征传到全连接层中,通过全连接层,进行分类,获得分类模型,得到最后的结果。图4-5为一个三层的全连接层。假设卷积神经网络中,传入全连接层的特征为x1,x2。则其在全连接层中的向前传播过程如图4-5所示。第一层全连接层有3个神经元y1,y2,y3。这三个节点的权值矩阵为W,其中b1,b2,b3分别为节点y1,y2,y3的偏置量。可以看出,在全连接层中,参数的个数=全连接层中节点的个数×输入的特征的个数+节点的个数(偏置量)。其向前传递过程具体如图所示,得到输出矩阵后,经过激励函数f(y)的激活,传入下一层。

技术分享图片

 

图4-5全连接层的向前传播过程

1.2卷积神经网络的反向传播过程

当卷积神经网络输出的结果与我们的期望值不相符时,则进行反向传播过程。求出结果与期望值的误差,再将误差一层一层的返回,计算出每一层的误差,然后进行权值更新。该过程的主要目的是通过训练样本和期望值来调整网络权值。误差的传递过程可以这样来理解,首先,数据从输入层到输出层,期间经过了卷积层,下采样层,全连接层,而数据在各层之间传递的过程中难免会造成数据的损失,则也就导致了误差的产生。而每一层造成的误差值是不一样的,所以当我们求出网络的总误差之后,需要将误差传入网络中,求得该各层对于总的误差应该承担多少比重。

反向传播的训练过程的第一步为计算出网络总的误差:求出输出层n的输出a(n)与目标值y之间为误差。计算公式为:

             技术分享图片其中,为激励函数的导函数的值。

1.2.1全连接层之间的误差传递

求出网络的总差之后,进行反向传播过程,将误差传入输出层的上一层全连接层,求出在该层中,产生了多少误差。而网络的误差又是由组成该网络的神经元所造成的,所以我们要求出每个神经元在网络中的误差。求上一层的误差,需要找出上一层中哪些节点与该输出层连接,然后用误差乘以节点的权值,求得每个节点的误差,具体如图所示:

技术分享图片

 

图4-6 全连接层中误差的传递过程

1.2.2当前层为下采样层,求上一层的误差

在下采样层中,根据采用的池化方法,把误差传入到上一层。下采样层如果采用的是最大池化(max-pooling)的方法,则直接把误差传到上一层连接的节点中。果采用的是均值池化(mean pooling)的方法,误差则是均匀的分布到上一层的网络中。另外在下采样层中,是不需要进行权值更新的,只需要正确的传递所有的误差到上一层。

1.2.3当前层为卷积层,求上一层的误差

卷积层中采用的是局部连接的方式,和全连接层的误差传递方式不同,在卷积层中,误差的传递也是依靠卷积核进行传递的。在误差传递的过程,我们需要通过卷积核找到卷积层和上一层的连接节点。求卷积层的上一层的误差的过程为:先对卷积层误差进行一层全零填充,然后将卷积层进行一百八十度旋转,再用旋转后的卷积核卷积填充过程的误差矩阵,并得到了上一层的误差。如图4-7为卷积层的误差传递过程。图右上方为卷积层的向前卷积过程,而右下方为卷积层的误差传递过程。从图中可以看出,误差的卷积过程正好是沿着向前传播的过程,将误差传到了上一层。

技术分享图片

 

图4-7卷积层的误差传递过程

1.3卷积神经网络的权值更新

1.3.1卷积层的权值更新

卷积层的误差更新过程为:将误差矩阵当做卷积核,卷积输入的特征图,并得到了权值的偏差矩阵,然后与原先的卷积核的权值相加,并得到了更新后的卷积核。如图4-8,图中可以看出,该卷积方式的权值连接正好和向前传播中权值的连接是一致的。

技术分享图片

 

图4-8卷积核的权值更新过程

1.3.2全连接层的权值更新过程

全连接层中的权值更新过程为:

1、求出权值的偏导数值:学习速率乘以激励函数的倒数乘以输入值;

2、原先的权值加上偏导值,得到新的权值矩阵。具体的过程如图4-9所示(图中的激活函数为Sigmoid函数)。

技术分享图片

图4-9全连接层的权值更新过程

 

 

 

 

 

 

卷积神经网络(CNN)的训练过程

标签:计算   获得   方法   二层   png   block   src   进入   激活   

原文地址:https://www.cnblogs.com/hesi/p/9013328.html

(2)
(13)
   
举报
评论 一句话评论(0
0条  
登录后才能评论!
© 2014 mamicode.com 版权所有 京ICP备13008772号-2
迷上了代码!