标签:插入数据 table bye nbsp info tab import mapred cdc
1. 以下关系型数据库中的表和数据,要求将其转换为适合于HBase存储的表并插入数据:
学生表(Student)(不包括最后一列)
| 
 学号(S_No)  | 
 姓名(S_Name)  | 
 性别(S_Sex)  | 
 年龄(S_Age)  | 
 课程(course)  | 
| 
 2015001  | 
 Zhangsan  | 
 male  | 
 23  | 
|
| 
 2015003  | 
 Mary  | 
 female  | 
 22  | 
|
| 
 2015003  | 
 Lisi  | 
 male  | 
 24  | 
 数学(Math)85  | 
create ‘Student‘, ‘ S_No ‘,‘S_Name‘, ’S_Sex’,‘S_Age‘ put ‘Student‘,‘s001‘,‘S_No‘,‘2015001‘ put ‘Student‘,‘s001‘,‘S_Name‘,‘Zhangsan‘ put ‘Student‘,‘s001‘,‘S_Sex‘,‘male‘ put ‘Student‘,‘s001‘,‘S_Age‘,‘23‘ put ‘Student‘,‘s002‘,‘S_No‘,‘2015003‘ put ‘Student‘,‘s002‘,‘S_Name‘,‘Mary‘ put ‘Student‘,‘s002‘,‘S_Sex‘,‘female‘ put ‘Student‘,‘s002‘,‘S_Age‘,‘22‘ put ‘Student‘,‘s003‘,‘S_No‘,‘2015003‘ put ‘Student‘,‘s003‘,‘S_Name‘,‘Lisi‘ put ‘Student‘,‘s003‘,‘S_Sex‘,‘male‘ put ‘Student‘,‘s003‘,‘S_Age‘,‘24‘
2. 用Hadoop提供的HBase Shell命令完成相同任务:
list scan ‘Student‘ alter ‘Student‘,‘NAME‘=>‘course‘ put ‘Student‘,‘s003‘,‘course:Math‘,‘85‘ dorp ‘Student‘,‘course‘ count ‘s1‘ count ‘Student‘ truncate ‘s1‘ truncate ‘Student‘
理解MapReduce
1. 用Python编写WordCount程序并提交任务
| 
 程序  | 
 WordCount  | 
| 
 输入  | 
 一个包含大量单词的文本文件  | 
| 
 输出  | 
 文件中每个单词及其出现次数(频数),并按照单词字母顺序排序,每个单词和其频数占一行,单词和频数之间有间隔  | 
#! /usr/bin/python3
# Map函数
import sys
for line in sys.stdin:
     line=line.strip()
     words=line.split()
     for word in words:
          print (‘%s\t%s‘ % (word,1))
#! /usr/bin/python3
# Reduce函数
from operator import itemgetter
import sys
current_word=None
current_count=0
word=None
for line in sys.stdin:
     line=line.strip()
     word,count=line.split(‘\t‘,1)
     try:
          count=int(count)
     except ValueError:
          continue
     if current_word==word:
          current_count+=count
     else:
          if current_word:
              print (‘%s\t%s‘ % (current_word,current_count))
          current_count=count
          current_word=word
if current_word==word:
     print (‘%s\t%s‘ % (current_word,current_count))
sudo chmod 777 mapper.py sudo chmod 777 reducter.py
echo "Hello World, Bye World" | ./mapper.py echo "Hello World, Bye World" | ./mapper.py | sort -k1,1 | ./reducter.py
 
2. 用mapreduce 处理气象数据集
编写程序求每日最高最低气温,区间最高最低气温
cd /usr/hadoop sodu mkdir qx cd /usr/hadoop/qx wget -D --accept-regex=REGEX -P data -r -c ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2009/6* cd /usr/hadoop/qx/data/ftp.ncdc.noaa.gov/pub/data/noaa/2009 sudo zcat 1*.gz >qxdata.txt cd /usr/hadoop/qx import sys for i in sys.stdin: i = i.strip() d = i[15:23] t = i[87:92] print ‘%s\t%s‘ % (d,t) from operator import itemggetter import sys current_word = None current_count = 0 word = None for i in sys.stdin: i = i.strip() word,count = i.split(‘\t‘, 1) try: count = int(count) except ValueError: continue if current_word == word: if current_count > count: current_count = count else: if current_word: print ‘%s\t%s‘ % (current_word, current_count) current_count = count current_word = word if current_word == word: print ‘%s\t%s‘ % (current_word, current_count) chmod a+x /usr/hadoop/qx/mapper.py chmod a+x /usr/hadoop/qx/reducer.py
标签:插入数据 table bye nbsp info tab import mapred cdc
原文地址:https://www.cnblogs.com/severusandsusa/p/9021931.html