码迷,mamicode.com
首页 > 其他好文 > 详细

一道积分不等式

时间:2018-05-11 17:26:59      阅读:148      评论:0      收藏:0      [点我收藏+]

标签:inline   证明   rac   公式   根据   class   int   math   []   

一道积分不等式

2018.05.11

\(f\)是正值函数,\(f\in C[a,b]\),记\(\int_a^b{f\left( x \right)}dx=A\),证明:\(\int_a^b{f\left( x \right) e^{f\left( x \right)}}dx\int_a^b{\frac{1}{f\left( x \right)}}dx\ge \left( b-a \right) \left( b-a+A \right) .\)

\(solution:\)

\(Schwarz不等式\),左边\(\ge\left( \int_a^b{\sqrt[]{e^{f\left( x \right)}}}dx \right) ^2,\)

根据\(Taylor\)公式,\(e^{f\left( x \right)}=1+f\left( x \right) +\frac{1}{2}f^2\left( x \right) +\cdots \ge \left( 1+\frac{1}{2}f\left( x \right) \right) ^2,\)

故左边\(\left( \int_a^b{\left( 1+\frac{1}{2}f\left( x \right) \right) dx} \right) ^2=\left( b-a+\frac{1}{2}A \right) ^2\ge \left( b-a \right) \left( b-a+A \right) .\)

本题解答由kkd给出.

一道积分不等式

标签:inline   证明   rac   公式   根据   class   int   math   []   

原文地址:https://www.cnblogs.com/lagrange/p/9025146.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!