码迷,mamicode.com
首页 > 其他好文 > 详细

[转摘]图像复原(图片去噪与去模糊)-低级图像处理/视觉任务

时间:2018-05-13 15:36:35      阅读:2141      评论:0      收藏:0      [点我收藏+]

标签:position   format   form   targe   https   sel   ova   mission   detail   


[转摘自知乎]链接:https://www.zhihu.com/question/272305330/answer/366831382

去除雨滴,去雾,去除噪声,去尘土和去模糊等都是这一类的,图像复原(低级图像处理/视觉任务)。

采用生成对抗网络和感知损失进行这类研究,也已经很多很多。

以下是一些工作,但是未必采用GAN去做。

1、Density-aware Single Image De-raining using a Multi-stream Dense Network CVPR2018

有感知/特征损失,[paper]、[testing code]

密度感知多路密集网络DID-MDN,联合完成雨点密度估计和雨点去除。

技术分享图片
                                                                                 图一

效果非常好,速度也是非常快,应该是目前最好的模型。算法中的预训练,然后联合训练,估计是很tricky的。

2、Attentive Generative Adversarial Network for Raindrop Removal from a Single Image CVPR2018

[paper]

技术分享图片

                                                                                        图 2

该模型基于pix2pix,增加了attention-recurrent network,效果上比eigen2013的论文(第一个使用DL解决该问题的工作)好,也比pix2pix好。

但是给论文没有和其他算法比。

3、Densely Connected Pyramid Dehazing Network CVPR2018

去雾,有感知损失,[paper]、[code]

技术分享图片
                                                                                         图 3

使用黄色网络估计transmission,利用蓝色网络估计atmospheric light,然后利用公司,计算得到去雾图像。

论文中总损失有4个子损失,训练非常tricky。。。

4、Deep Joint Rain Detection and Removal from a Single Image CVPR2017

[paper]、[code]

比1差。

5、Image De-raining Using a Conditional Generative Adversarial Network 2017

类似pix2pix,[paper]、[code]

1中作者的以前工作,类似pix2pix。

6、Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal TIP2017

[paper]

7、Removing rain from single images via a deep detail network CVPR2017

[paper]

8、Rain Streak Removal Using Layer Priors CVPR2016

[paper]

Single Image Rain Streak Decomposition Using Layer Priors TIP2017

[paper]

9、Perceptual Adversarial Networks for Image-to-Image Transformation 2017

类似pix2pix,有感知损失,[paper]

[转摘]图像复原(图片去噪与去模糊)-低级图像处理/视觉任务

标签:position   format   form   targe   https   sel   ova   mission   detail   

原文地址:https://www.cnblogs.com/kelvinRay/p/9032205.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!