码迷,mamicode.com
首页 > 其他好文 > 详细

【有重边与无重边的无向图的割边求法】

时间:2018-05-13 23:01:34      阅读:173      评论:0      收藏:0      [点我收藏+]

标签:处理   割边   ack   --   struct   防止   inf   介绍   函数   

无向图无重边:也就每两个顶点之间最多有一条边相连【也就是根据顶点编号即可确定边】【如下】

技术分享图片

无向图有重边如:顶点1与顶点2有两条或更多的边直接相连【也就是不能根据顶点编号来确定边】【如下】

技术分享图片

 

首先介绍无重边的无向图的割边求法:由于无重边的无向图中可以根据顶点来确定边,所以函数中的参数 u 和 fa  都是顶点。

 1 #include <stdio.h>
 2 #include <string.h>
 3 #include <vector>
 4 using namespace std;
 5 const int N = 1000 + 10;
 6 vector<int> g[N];
 7 int dfs_clock,pre[N];
 8 int cnt;
 9 int dfs(int u, int fa)
10 {
11     int lowu = pre[u] = ++dfs_clock;
12     int i,v,lowv;
13     for(i=0; i<g[u].size(); ++i)
14     {
15         v = g[u][i];
16         if(!pre[v])
17         {
18             lowv = dfs(v,u);
19             lowu = min(lowu,lowv);
20             if(lowv > pre[u])//相对于割点,只把等号给去掉了
21                 cnt++;
22         }
23         else if(v!=fa && pre[v]<lowu)//v!=fa 因为无重边,所以由v != fa来防止一条边的端点反复使用两次,从而避免使原本是桥的边判定为了不是桥,但也正因为它不更新父节点导致了其不能处理重边
24             lowu = pre[v];
25     }
26     return lowu;
27 }
28 int main()
29 {
30     int i,x,y;
31     int n,m;
32     scanf("%d%d",&n,&m);
33     for(i=0; i<m; ++i)
34     {
35         scanf("%d%d",&x,&y);
36         g[x].push_back(y);
37         g[y].push_back(x);
38     }
39     dfs(1,-1);
40 
41     printf("%d\n",cnt);
42 }

下面是有重边的无向图的割边求法:由于有重边的无向图中不可以根据顶点来确定边,所以函数中的参数 u 是顶点,而 id 是边的编号。

 1 #include"string.h"  
 2 #include"stdio.h"  
 3 #include"iostream"  
 4 #define M 1111  
 5 #define inf 999999999  
 6 using namespace std;  
 7 struct st  
 8 {  
 9     int u,v,w,next;  
10 }edge[M*M*2];  
11 int head[M],dfn[M],low[M],bridge[M],n,t,index,num,mini,flag;  
12 void init()  
13 {  
14     t=0;  
15     memset(head,-1,sizeof(head));  
16 }  
17 void add(int u,int v,int w)  
18 {  
19     edge[t].u=u;  
20     edge[t].v=v;  
21     edge[t].w=w;  
22     edge[t].next=head[u];  
23     head[u]=t++;  
24 }  
25 void tarjan(int u,int id)  
26 {  
27     dfn[u]=low[u]=++index;  
28     int i;  
29     for(i=head[u];i!=-1;i=edge[i].next)  
30     {  
31         if(i==(1^id))continue; //和无重边的无向图通过v!=fa来避免同一条边重复遍历的处理方式不一样,这个是利用一条边的编号的异或关系来避免重复遍历的 
32         int v=edge[i].v;  
33         if(!dfn[v])  
34         {  
35             tarjan(v,i);  
36             low[u]=min(low[u],low[v]);  
37             if(low[v]>dfn[u])  
38             {  
39                 bridge[num++]=i;  
40                 if(mini>edge[i].w)  
41                     mini=edge[i].w;  
42             }  
43   
44         }  
45         low[u]=min(low[u],dfn[v]);  //由于上面已经对同一条边进行规避了,所以不需要使用多余的判断,直接就能更新了 
46     }  
47 }  
48 void solve()  
49 {  
50     index=num=flag=0;  
51     memset(dfn,0,sizeof(dfn));  
52     memset(low,0,sizeof(low));  
53     for(int i=1;i<=n;i++)  
54     {  
55         if(!dfn[i])  
56         {  
57             flag++;  
58             tarjan(i,-1);  
59         }  
60   
61     }  
62 }  
63 int main()  
64 {  
65     int m;  
66     while(scanf("%d%d",&n,&m),m||n)  
67     {  
68         init();  
69         while(m--)  
70         {  
71             int a,b,c;  
72             scanf("%d%d%d",&a,&b,&c);  
73             add(a,b,c);  
74             add(b,a,c);  
75         }  
76         mini=inf;  
77         solve();  
78         if(flag>1)  
79             printf("0\n");  
80         else if(num==0)  
81             printf("-1\n");  
82         else  
83         {  
84             if(mini==0)  
85                 printf("1\n");  
86             else  
87                 printf("%d\n",mini);  
88         }  
89     }  
90 }  

 

【有重边与无重边的无向图的割边求法】

标签:处理   割边   ack   --   struct   防止   inf   介绍   函数   

原文地址:https://www.cnblogs.com/MekakuCityActor/p/9033586.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!