标签:-- tensor 源代码 caffe 输入 计算 数据集 参数 种类
速度优化的方向:
1、减少输入图片的尺寸, 但是相应的准确率可能会有所下降
2、优化darknet工程源代码(去掉一些不必要的运算量或者优化运算过程)
3、剪枝和量化yolov3网络(压缩模型---> 减枝可以参考tiny-yolo的过程 , 量化可能想到的就是定点化可能也需要牺牲精度)
4、darknet -----> caffe/tensorflow + tensorrt(主要是针对GPU这块的计算优化)
精度优化的方向:
1、增加数据量和数据种类(coco + voc + kitti数据集训练)
2、超参数的调整:(batch learnrate)
标签:-- tensor 源代码 caffe 输入 计算 数据集 参数 种类
原文地址:https://www.cnblogs.com/llfctt/p/9037685.html