标签:二维 题解 int AC 旋转 ios Plan freopen struct
把直线的斜率分解成二维,也就是随着z的增加x的增量和y的增量
我们发现一条合法直线向上移一点一定能碰到一条横线
知道了这条横线可以算出y的斜率
我们旋转一下,让这条横线碰到两条竖线,就可以算出x的斜率,进而判断直线在不在平面内
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
//#define ivorysi
#define MAXN 105
#define eps 1e-8
using namespace std;
typedef long long int64;
typedef double db;
struct plane{
double x[2],y[2],z;
}pl[MAXN];
struct Point{
double x,y;
}P[MAXN * 4];
int N,cnt;
db yk,xk,sx;
void Init() {
scanf("%d",&N);
for(int i = 1 ; i <= N ; ++i) {
scanf("%lf%lf%lf%lf%lf",&pl[i].x[0],&pl[i].y[0],&pl[i].x[1],&pl[i].y[1],&pl[i].z);
}
}
void Solve() {
for(int i = 1 ; i <= N ; ++i) {
for(int r = 0 ; r <= 1 ; ++r) {
db k = pl[i].y[r] / pl[i].z;
cnt = 0;
bool flag = 0;
for(int j = 1 ; j <= N ; ++j) {
if(pl[j].z * k > pl[j].y[1] + eps || pl[j].z * k < pl[j].y[0] - eps) goto succ;
for(int c = 0 ; c <= 1 ; ++c) {
P[++cnt] = (Point){pl[j].x[c],pl[j].z};
}
}
yk = k;
for(int j = 1 ; j <= cnt ; ++j) {
for(int h = j + 1 ; h <= cnt ; ++h) {
if(P[j].y == P[h].y) continue;
flag = 1;
k = (P[j].x - P[h].x) / (P[j].y - P[h].y);
if(P[j].x == P[h].x) k = 0;
sx = P[j].x - P[j].y * k;
for(int l = 1 ; l <= N ; ++l) {
db tmp = sx + k * pl[l].z;
if(tmp < pl[l].x[0] - eps || tmp > pl[l].x[1] + eps) {flag = 0;break;}
}
if(flag) {
xk = k;goto succ;
}
}
}
succ:;
if(flag) {
puts("SOLUTION");
printf("%.6f\n",sx);
for(int i = 1 ; i <= N ; ++i) {
printf("%.6f %.6f %.6f\n",sx + xk * pl[i].z,yk * pl[i].z,pl[i].z);
}
return;
}
}
}
puts("UNSOLVABLE");
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}
标签:二维 题解 int AC 旋转 ios Plan freopen struct
原文地址:https://www.cnblogs.com/ivorysi/p/9039170.html