标签:工程 步骤 pat -- show bin false redis命令 业界
参考:
https://www.zhihu.com/question/21419897
http://www.cnblogs.com/haoxinyue/p/redis.html
为什么集群?
通常,为了提高网站响应速度,总是把热点数据保存在内存中而不是直接从后端数据库中读取。Redis是一个很好的Cache工具。大型网站应用,热点数据量往往巨大,几十G上百G是很正常的事儿,在这种情况下,如何正确架构Redis呢?
首先,无论我们是使用自己的物理主机,还是使用云服务主机,内存资源往往是有限制的,scale up不是一个好办法,我们需要scale out横向可伸缩扩展,这需要由多台主机协同提供服务,即分布式多个Redis实例协同运行。
其次,目前硬件资源成本降低,多核CPU,几十G内存的主机很普遍,对于主进程是单线程工作的Redis,只运行一个实例就显得有些浪费。同时,管理一个巨大内存不如管理相对较小的内存高效。因此,实际使用中,通常一台机器上同时跑多个Redis实例。
方案
1.Redis官方集群方案 Redis Cluster
Redis Cluster是一种服务器Sharding技术,3.0版本开始正式提供。
Redis Cluster中,Sharding采用slot(槽)的概念,一共分成16384个槽,这有点儿类pre sharding思路。对于每个进入Redis的键值对,根据key进行散列,分配到这16384个slot中的某一个中。使用的hash算法也比较简单,就是CRC16后16384取模。
Redis集群中的每个node(节点)负责分摊这16384个slot中的一部分,也就是说,每个slot都对应一个node负责处理。当动态添加或减少node节点时,需要将16384个槽做个再分配,槽中的键值也要迁移。当然,这一过程,在目前实现中,还处于半自动状态,需要人工介入。
Redis集群,要保证16384个槽对应的node都正常工作,如果某个node发生故障,那它负责的slots也就失效,整个集群将不能工作。
为了增加集群的可访问性,官方推荐的方案是将node配置成主从结构,即一个master主节点,挂n个slave从节点。这时,如果主节点失效,Redis Cluster会根据选举算法从slave节点中选择一个上升为主节点,整个集群继续对外提供服务。这非常类似前篇文章提到的Redis Sharding场景下服务器节点通过Sentinel监控架构成主从结构,只是Redis Cluster本身提供了故障转移容错的能力。
Redis Cluster的新节点识别能力、故障判断及故障转移能力是通过集群中的每个node都在和其它nodes进行通信,这被称为集群总线(cluster bus)。它们使用特殊的端口号,即对外服务端口号加10000。例如如果某个node的端口号是6379,那么它与其它nodes通信的端口号是16379。nodes之间的通信采用特殊的二进制协议。
对客户端来说,整个cluster被看做是一个整体,客户端可以连接任意一个node进行操作,就像操作单一Redis实例一样,当客户端操作的key没有分配到该node上时,Redis会返回转向指令,指向正确的node,这有点儿像浏览器页面的302 redirect跳转。
Redis Cluster是Redis 3.0以后才正式推出,时间较晚,目前能证明在大规模生产环境下成功的案例还不是很多,需要时间检验。
2.Redis Sharding集群
Redis 3正式推出了官方集群技术,解决了多Redis实例协同服务问题。Redis Cluster可以说是服务端Sharding分片技术的体现,即将键值按照一定算法合理分配到各个实例分片上,同时各个实例节点协调沟通,共同对外承担一致服务。
多Redis实例服务,比单Redis实例要复杂的多,这涉及到定位、协同、容错、扩容等技术难题。这里,我们介绍一种轻量级的客户端Redis Sharding技术。
Redis Sharding可以说是Redis Cluster出来之前,业界普遍使用的多Redis实例集群方法。其主要思想是采用哈希算法将Redis数据的key进行散列,通过hash函数,特定的key会映射到特定的Redis节点上。这样,客户端就知道该向哪个Redis节点操作数据。Sharding架构如图:
庆幸的是,java redis客户端驱动jedis,已支持Redis Sharding功能,即ShardedJedis以及结合缓存池的ShardedJedisPool。
Jedis的Redis Sharding实现具有如下特点:
2.为了避免一致性哈希只影响相邻节点造成节点分配压力,ShardedJedis会对每个Redis节点根据名字(没有,Jedis会赋予缺省名字)会虚拟化出160个虚拟节点进行散列。根据权重weight,也可虚拟化出160倍数的虚拟节点。用虚拟节点做映射匹配,可以在增加或减少Redis节点时,key在各Redis节点移动再分配更均匀,而不是只有相邻节点受影响。
3.ShardedJedis支持keyTagPattern模式,即抽取key的一部分keyTag做sharding,这样通过合理命名key,可以将一组相关联的key放入同一个Redis节点,这在避免跨节点访问相关数据时很重要。
Redis Sharding采用客户端Sharding方式,服务端Redis还是一个个相对独立的Redis实例节点,没有做任何变动。同时,我们也不需要增加额外的中间处理组件,这是一种非常轻量、灵活的Redis多实例集群方法。
当然,Redis Sharding这种轻量灵活方式必然在集群其它能力方面做出妥协。比如扩容,当想要增加Redis节点时,尽管采用一致性哈希,毕竟还是会有key匹配不到而丢失,这时需要键值迁移。
作为轻量级客户端sharding,处理Redis键值迁移是不现实的,这就要求应用层面允许Redis中数据丢失或从后端数据库重新加载数据。但有些时候,击穿缓存层,直接访问数据库层,会对系统访问造成很大压力。有没有其它手段改善这种情况?
Redis作者给出了一个比较讨巧的办法--presharding,即预先根据系统规模尽量部署好多个Redis实例,这些实例占用系统资源很小,一台物理机可部署多个,让他们都参与sharding,当需要扩容时,选中一个实例作为主节点,新加入的Redis节点作为从节点进行数据复制。数据同步后,修改sharding配置,让指向原实例的Shard指向新机器上扩容后的Redis节点,同时调整新Redis节点为主节点,原实例可不再使用。
presharding是预先分配好足够的分片,扩容时只是将属于某一分片的原Redis实例替换成新的容量更大的Redis实例。参与sharding的分片没有改变,所以也就不存在key值从一个区转移到另一个分片区的现象,只是将属于同分片区的键值从原Redis实例同步到新Redis实例。并不是只有增删Redis节点引起键值丢失问题,更大的障碍来自Redis节点突然宕机。在《Redis持久化》一文中已提到,为不影响Redis性能,尽量不开启AOF和RDB文件保存功能,可架构Redis主备模式,主Redis宕机,数据不会丢失,备Redis留有备份。
这样,我们的架构模式变成一个Redis节点切片包含一个主Redis和一个备Redis。在主Redis宕机时,备Redis接管过来,上升为主Redis,继续提供服务。主备共同组成一个Redis节点,通过自动故障转移,保证了节点的高可用性。则Sharding架构演变成: Redis Sentinel提供了主备模式下Redis监控、故障转移功能达到系统的高可用性。
高访问量下,即使采用Sharding分片,一个单独节点还是承担了很大的访问压力,这时我们还需要进一步分解。通常情况下,应用访问Redis读操作量和写操作量差异很大,读常常是写的数倍,这时我们可以将读写分离,而且读提供更多的实例数。
可以利用主从模式实现读写分离,主负责写,从负责只读,同时一主挂多个从。在Sentinel监控下,还可以保障节点故障的自动监测。
3.利用代理中间件实现大规模Redis集群
上面分别介绍了多Redis服务器集群的两种方式,它们是基于客户端sharding的Redis Sharding和基于服务端sharding的Redis Cluster。
客户端sharding技术其优势在于服务端的Redis实例彼此独立,相互无关联,每个Redis实例像单服务器一样运行,非常容易线性扩展,系统的灵活性很强。其不足之处在于:
服务端sharding的Redis Cluster其优势在于服务端Redis集群拓扑结构变化时,客户端不需要感知,客户端像使用单Redis服务器一样使用Redis集群,运维管理也比较方便。
不过Redis Cluster正式版推出时间不长,系统稳定性、性能等都需要时间检验,尤其在大规模使用场合。
能不能结合二者优势?即能使服务端各实例彼此独立,支持线性可伸缩,同时sharding又能集中处理,方便统一管理?本篇介绍的Redis代理中间件twemproxy就是这样一种利用中间件做sharding的技术。
twemproxy处于客户端和服务器的中间,将客户端发来的请求,进行一定的处理后(如sharding),再转发给后端真正的Redis服务器。也就是说,客户端不直接访问Redis服务器,而是通过twemproxy代理中间件间接访问。
参照Redis Sharding架构,增加代理中间件的Redis集群架构如下:
twemproxy中间件的内部处理是无状态的,它本身可以很轻松地集群,这样可避免单点压力或故障。
twemproxy又叫nutcracker,起源于twitter系统中redis/memcached集群开发实践,运行效果良好,后代码奉献给开源社区。其轻量高效,采用C语言开发,工程网址是:GitHub - twitter/twemproxy: A fast, light-weight proxy for memcached and redis
twemproxy后端不仅支持redis,同时也支持memcached,这是twitter系统具体环境造成的。
由于使用了中间件,twemproxy可以通过共享与后端系统的连接,降低客户端直接连接后端服务器的连接数量。同时,它也提供sharding功能,支持后端服务器集群水平扩展。统一运维管理也带来了方便。
当然,也是由于使用了中间件代理,相比客户端直连服务器方式,性能上会有所损耗,实测结果大约降低了20%左右。
由于单台redis服务器的内存管理能力有限,使用过大内存redis服务器的性能急剧下降,且服务器发生故障将直接影响大面积业务。为了获取更好的缓存性能及扩展型,我们将需要搭建redis集群来满足需求。因redis 3.0 beta支持的集群功能不适合生产环境的使用,所以我们采用twitter正在使用的twemproxy来搭建redis缓存服务器集群,目前用户包括Pinterest、Tumblr、Twitter、Vine、Kiip、Wuaki.tv、Wanelo、Kontera、Wikimedia、Bright、56.com、Snapchat、Digg、Gawkermedia、3scale.net等。
Twemproxy是memcached和redis协议的代理服务器,并能有效减少大量连接对redis服务器的性能影响,它提供的主要特性如下:
有三台服务器,一台COS1安装twemproxy,另外两台COS2,COS3安装redis。
[root@COS2 redis-2.8.9]# yum install gcc
[root@COS2 src]# rpm -ivh tcl-8.5.7-6.el6.x86_64.rpm
[root@COS2 src]# tar xvf redis-2.8.9.tar.gz
[root@COS2 src]# cd redis-2.8.9
[root@COS2 redis-2.8.9]# make
…
Hint: To run ‘make test‘ is a good idea ;)
make[1]: Leaving directory `/usr/local/src/redis-2.8.9/src‘
[root@COS2 redis-2.8.9]# make test
All tests passed without errors!
Cleanup: may take some time... OK
make[1]: Leaving directory `/usr/local/src/redis-2.8.9/src‘
[root@COS2 redis-2.8.9]# make install
[root@COS2 redis-2.8.9]# cd /usr/local/bin/
[root@COS2 bin]# ll
total 13908
-rwxr-xr-x. 1 root root 4170264 Apr 26 11:51 redis-benchmark
-rwxr-xr-x. 1 root root 22185 Apr 26 11:51 redis-check-aof
-rwxr-xr-x. 1 root root 45419 Apr 26 11:51 redis-check-dump
-rwxr-xr-x. 1 root root 4263471 Apr 26 11:51 redis-cli
-rwxr-xr-x. 1 root root 5726791 Apr 26 11:51 redis-server
[root@COS2 redis-2.8.9]# cp redis.conf /etc/
[root@COS2 redis-2.8.9]# vim /etc/red
redhat-release redis.conf
[root@COS2 redis-2.8.9]# vim /etc/redis.conf
把里面的
daemonize no 修改成 daemonize yes
[root@COS2 redis-2.8.9]# redis-server /etc/redis.conf
[root@COS2 redis-2.8.9]# redis-cli
127.0.0.1:6379> set kin kin
OK
127.0.0.1:6379> get kin
[root@COS1 src]# tar xvf nutcracker-0.3.0.tar.gz
[root@COS1 nutcracker-0.3.0]# cd nutcracker-0.3.0
[root@COS1 src]#./configure
[root@COS1 nutcracker-0.3.0]# make && make install
[root@COS1 conf]# cd /usr/local/src/nutcracker-0.3.0/conf
[root@COS1 conf]# cp nutcracker.yml /etc/
[root@COS1 conf]# vim /etc/nutcracker.yml
alpha:
listen: 0.0.0.0:22121
hash: fnv1a_64
distribution: ketama
auto_eject_hosts: true
redis: true
server_retry_timeout: 2000
server_failure_limit: 1
servers: --两台redis服务器的地址和端口
- 10.23.22.240:6379:1
- 10.23.22.241:6379:1
[root@COS1 nutcracker-0.3.0]# nutcracker -t /etc/nutcracker.yml
nutcracker: configuration file ‘conf/nutcracker.yml‘ syntax is ok
[root@COS1 nutcracker-0.3.0]# nutcracker --help
This is nutcracker-0.3.0
Usage: nutcracker [-?hVdDt] [-v verbosity level] [-o output file]
[-c conf file] [-s stats port] [-a stats addr]
[-i stats interval] [-p pid file] [-m mbuf size]
Options:
-h, --help : this help
-V, --version : show version and exit
-t, --test-conf : test configuration for syntax errors and exit
-d, --daemonize : run as a daemon
-D, --describe-stats : print stats description and exit
-v, --verbosity=N : set logging level (default: 5, min: 0, max: 11)
-o, --output=S : set logging file (default: stderr)
-c, --conf-file=S : set configuration file (default: conf/nutcracker.yml) #配置
-s, --stats-port=N : set stats monitoring port (default: 22222)
-a, --stats-addr=S : set stats monitoring ip (default: 0.0.0.0)
-i, --stats-interval=N : set stats aggregation interval in msec (default: 30000 msec)
-p, --pid-file=S : set pid file (default: off)
-m, --mbuf-size=N : set size of mbuf chunk in bytes (default: 16384 bytes)
[root@COS1 nutcracker-0.3.0]# nutcracker -d -c /etc/nutcracker.yml
[root@COS1 nutcracker-0.3.0]# ps -ef|grep nutcracker
root 15358 1 0 02:40 ? 00:00:00 nutcracker -d -c /etc/nutcracker.yml
[root@COS1 ~]# redis-cli -p 22121
127.0.0.1:22121> get kin
"kin"
127.0.0.1:22121> set kin king
OK
127.0.0.1:22121> get kin
"king"
这里使用redis自带的redis-benchmark进行简单的性能测试,测试结果如下:
[root@COS1 src]# redis-benchmark -h 10.23.22.240 -p 22121 -c 100 -t set -d 100 -l –q
SET: 38167.94 requests per second
[root@COS2 ~]# redis-benchmark -h 10.23.22.241 -p 6379 -c 100 -t set -d 100 -l –q
SET: 53191.49 requests per second
[root@COS1 src]# redis-benchmark -h 10.23.22.240 -p 22121 -c 100 -t get -d 100 -l -q
GET: 37453.18 requests per second
[root@COS2 ~]# redis-benchmark -h 10.23.22.241 -p 6379 -c 100 -t get -d 100 -l -q
GET: 62111.80 requests per second
[root@COS2 ~]# redis-cli info|grep db0
db0:keys=51483,expires=0,avg_ttl=0
[root@COS3 ~]# redis-cli info|grep db0
db0:keys=48525,expires=0,avg_ttl=0
测试结果:以基本的set get命令通过twemproxy性能有所下降;通过twemproxy分布基本平均。测试数据以业务测试为准。
1、twemproxy explore
当我们有大量 Redis 或 Memcached 的时候,通常只能通过客户端的一些数据分配算法(比如一致性哈希),来实现集群存储的特性。虽然Redis 2.6版本已经发布Redis Cluster,但还不是很成熟适用正式生产环境。 Redis 的 Cluster 方案还没有正式推出之前,我们通过 Proxy 的方式来实现集群存储。
Twitter,世界最大的Redis集群之一部署在Twitter用于为用户提供时间轴数据。Twitter Open Source部门提供了Twemproxy。
Twemproxy,也叫nutcraker。是一个twtter开源的一个redis和memcache代理服务器。 redis作为一个高效的缓存服务器,非常具有应用价值。但是当使用比较多的时候,就希望可以通过某种方式 统一进行管理。避免每个应用每个客户端管理连接的松散性。同时在一定程度上变得可以控制。
Twemproxy是一个快速的单线程代理程序,支持Memcached ASCII协议和更新的Redis协议:
它全部用C写成,使用Apache 2.0 License授权。项目在Linux上可以工作,而在OSX上无法编译,因为它依赖了epoll API.
Twemproxy 通过引入一个代理层,可以将其后端的多台 Redis 或 Memcached 实例进行统一管理与分配,使应用程序只需要在 Twemproxy 上进行操作,而不用关心后面具体有多少个真实的 Redis 或 Memcached 存储。
2、twemproxy特性:
支持请求的流式与批处理,降低来回的消耗
另外可以修改redis的源代码,抽取出redis中的前半部分,作为一个中间代理层。最终都是通过linux下的epoll 事件机制提高并发效率,其中nutcraker本身也是使用epoll的事件机制。并且在性能测试上的表现非常出色。
3、twemproxy问题与不足
Twemproxy 由于其自身原理限制,有一些不足之处,如:
4、安装与配置
具体的安装步骤可用查看github: https://github.com/twitter/twemproxy
Twemproxy 的安装,主要命令如下:
apt-get install automake
apt-get install libtool
git clone git://github.com/twitter/twemproxy.git
cd twemproxy
autoreconf -fvi
./configure --enable-debug=log
make
src/nutcracker -h
通过上面的命令就算安装好了,然后是具体的配置,下面是一个典型的配置
redis1:
listen: 127.0.0.1:6379 #使用哪个端口启动Twemproxy
redis: true #是否是Redis的proxy
hash: fnv1a_64 #指定具体的hash函数
distribution: ketama #具体的hash算法
auto_eject_hosts: true #是否在结点无法响应的时候临时摘除结点
timeout: 400 #超时时间(毫秒)
server_retry_timeout: 2000 #重试的时间(毫秒)
server_failure_limit: 1 #结点故障多少次就算摘除掉
servers: #下面表示所有的Redis节点(IP:端口号:权重)
- 127.0.0.1:6380:1
- 127.0.0.1:6381:1
- 127.0.0.1:6382:1
redis2:
listen: 0.0.0.0:10000
redis: true
hash: fnv1a_64
distribution: ketama
auto_eject_hosts: false
timeout: 400
servers:
- 127.0.0.1:6379:1
- 127.0.0.1:6380:1
- 127.0.0.1:6381:1
- 127.0.0.1:6382:1
你可以同时开启多个 Twemproxy 实例,它们都可以进行读写,这样你的应用程序就可以完全避免所谓的单点故障。
Twemproxy是一种代理分片机制,由Twitter开源。Twemproxy作为代理,可接受来自多个程序的访问,按照路由规则,转发给后台的各个Redis服务器,再原路返回。该方案很好的解决了单个Redis实例承载能力的问题。当然,Twemproxy本身也是单点,需要用Keepalived做高可用方案。通过Twemproxy可以使用多台服务器来水平扩张redis服务,可以有效的避免单点故障问题。虽然使用Twemproxy需要更多的硬件资源和在redis性能有一定的损失(twitter测试约20%),但是能够提高整个系统的HA也是相当划算的。不熟悉twemproxy的同学,如果玩过nginx反向代理或者mysql proxy,那么你肯定也懂twemproxy了。其实twemproxy不光实现了redis协议,还实现了memcached协议,什么意思?换句话说,twemproxy不光可以代理redis,还可以代理memcached
twemproxy不会增加redis的性能指标数据,据业界测算,使用twemproxy相比直接使用redis会带来~10%的性能下降。
但是单个redis进程的内存管理能力有限。据测算,单个redis进程内存超过20G之后,效率会急剧下降。目前,我们给出的建议值是单个redis最好配置在8G以内。8G以上的redis缓存需求,通过twemproxy来提供支持。
Twemproxy的强大之处在于可以通过配置的方式让它禁用掉失败的结点,同时还能在一段时间后进行重试,抑或使用指定的键->服务器映射。这意味着在将Redis用作数据存储时,它可以对Redis数据集进行分片(禁用掉结点驱逐);在将Redis用作缓存时,它可以启用结点驱逐以实现简单的高可用性。
TwemProxy支持自动分片、失败节点摘除、一致性hash,优化Redis请求(批处理)等,同时TwemProxy也有一些不足之处,例如无法全面覆盖Redis命令(不支持事务,多值操作(如keys*))。扩展Redis实例时,无法自动将之前数据进行再分配(需要写脚本手动分配)。
标签:工程 步骤 pat -- show bin false redis命令 业界
原文地址:https://www.cnblogs.com/fyy-hhzzj/p/9040884.html