标签:class inf 大数 over limits 样本 text span 方差
(1)\(\sum\limits_{i=1}^{n}{({{X}_{i}}-\overline{X})}=0\);
(2)若总体\(X\)的均值、方差存在,且$EX=\mu $, \(DX={{\sigma }^{2}}\),则
$E\overline{X}=\mu $ ,\(D\overline{X}=\frac{{{\sigma }^{2}}}{n}\)
(3)当$n\to \infty $ 时,$ \overline{X}\xrightarrow{p}\mu $ .
证明 :
(1) \(\sum\limits_{i=1}^{n}{({{X}_{i}}-\overline{X})}\text{=}\sum\limits_{i=1}^{n}{{{X}_{i}}}-n\overline{X}=n\frac{\sum\limits_{i=1}^{n}{{{X}_{i}}}}{n}-n\overline{X}=n\overline{X}-n\overline{X}=0\)
(2) \(E\overline{X}=E(\frac{1}{n}\sum\limits_{i=1}^{n}{{{X}_{i}}})=\frac{1}{n}\sum\limits_{i=1}^{n}{E{{X}_{i}}}=\frac{1}{n}\sum\limits_{i=1}^{n}{EX}=\mu\) ,
\(D\overline{X}=D(\frac{1}{n}\sum\limits_{i=1}^{n}{{{X}_{i}}})=\frac{1}{{{n}^{2}}}\sum\limits_{i=1}^{n}{D{{X}_{i}}}=\frac{1}{{{n}^{2}}}\sum\limits_{i=1}^{n}{DX}=\frac{1}{{{n}^{2}}}n{{\sigma }^{2}}=\frac{{{\sigma }^{2}}}{n}\) .
(3) 由概率论中的大数定律知,当$n\to \infty $ 时,\(\overline{X}\xrightarrow{p}a\) .
标签:class inf 大数 over limits 样本 text span 方差
原文地址:https://www.cnblogs.com/wf-strongteam/p/9042971.html