标签:length color func map com contain col new fun
back function (return number)
remember the structure
class Solution { int res = 0; //List<List<Integer>> resList = new ArrayList<List<Integer>>(); public int combinationSum4(int[] nums, int target) { Arrays.sort(nums); return back(target, 0,nums,new HashMap<Integer,Integer>()); } int back(int target, int sum, int[] nums, Map<Integer,Integer> map){ if(sum == target){ return 1; }else if(sum > target) return 0; if(map.containsKey(sum)) return map.get(sum); int count = 0; for(int i = 0; i<nums.length; i++){ count+= back(target, sum+nums[i],nums,map); } map.put(sum,count); return count; } }
Solution 2:
dp keywards: how many ways and optimal
class Solution { public int combinationSum4(int[] nums, int target) { int[] dp = new int[target+1]; // how many cases for each number Arrays.sort(nums); for(int num:nums){ if(num>target) continue; dp[num] = 1; } for(int i = 1;i <=target; i++){ for(int num : nums){ if(i<num) continue; dp[i] += dp[i-num]; } } return dp[target]; } }
70. Climbing Stairs
class Solution { //dp[n] = dp[n-1] + dp[n-2] //dp[1] : 1, dp[0] = 1 ,dp[2] = 2, dp[3] = 3 public int climbStairs(int n) { int[] dp = new int[n+1]; dp[0] = 1; dp[1] = 1; for(int i = 2; i<=n; i++){ dp[i] = dp[i-1]+dp[i-2]; } return dp[n]; } }
377. Combination Sum IV 70. Climbing Stairs
标签:length color func map com contain col new fun
原文地址:https://www.cnblogs.com/stiles/p/Leetcode377.html