码迷,mamicode.com
首页 > 其他好文 > 详细

题解报告:hdu 1233 还是畅通工程

时间:2018-05-18 00:35:30      阅读:171      评论:0      收藏:0      [点我收藏+]

标签:定义   畅通工程   输入   unit   归并   name   inpu   不同的   时间复杂度   

Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
Sample Output
3
5
Huge input, scanf is recommended.
解题思路:①Prim算法的核心就是加点法,每次把离目标集合最小权值的一点加入其中。其算法跟Dijkstra大同小异,不同的是mincost数组记录的是当前点到目标集合的最小权值,下次就取最小权值的端点加入就可以了。其算法时间复杂度是O(n2),适合稠密图。
②Kruskal算法的核心就是加边法,并且运用到并查集。先将各边权值按升序排列,然后贪心加边,加边时查看当前边的两端点是否为同一个连通图中的两点,如果是的话,就不能纳入目标集合,因为会出现回路,即产生圈,这样就不满足树的定义了,否则将其加入。其时间复杂度是O(elogn),适合稀疏图。
AC代码之Prim算法:
 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 const int INF = 0x3f3f3f3f;
 4 const int maxn = 105;
 5 int n,a,b,c,mincost[maxn],cost[maxn][maxn];
 6 bool vis[maxn];
 7 int Prim(){//加点法
 8     for(int i=1;i<=n;++i)//这里选取节点1作为起点,mincost为各节点到最小生成树节点集合的最小权值
 9         mincost[i]=cost[1][i];
10     mincost[1]=0;vis[1]=true;//标记已访问
11     int res=0;//计算最小生成树的权值
12     for(int i=1;i<n;++i){
13         int k=-1;//标记为-1
14         for(int j=1;j<=n;++j)//找出到最小生成树节点集合的权值最小的还没入集合的一点
15             if(!vis[j] && (k==-1 || mincost[k]>mincost[j]))k=j;
16         if(k==-1)break;//如果还是-1,表示已经完成最小生成树的建立
17         vis[k]=true;//将节点k纳入最小生成树节点的集合
18         res+=mincost[k];//加上其权值
19         for(int j=1;j<=n;++j)//更新k的邻接点到最小生成树节点集合的最小权值
20             if(!vis[j])mincost[j]=min(mincost[j],cost[k][j]);//还没归纳的节点
21     }
22     return res;
23 }
24 int main()
25 {
26     while(~scanf("%d",&n) && n){
27         memset(vis,false,sizeof(vis));
28         for(int i=1;i<=n;++i){
29             for(int j=1;j<=n;++j)
30                 cost[i][j]=(i==j?0:INF);
31         }
32         for(int i=1;i<=n*(n-1)/2;++i){
33             cin>>a>>b>>c;
34             cost[a][b]=cost[b][a]=c;
35         }
36         printf("%d\n",Prim());
37     }
38     return 0;
39 }

AC代码之Kruskal算法:

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 int n,father[105],sum;
 4 struct edge{int u,v,cost;}es[5000];
 5 bool cmp(const edge& e1,const edge& e2){
 6     return e1.cost<e2.cost;
 7 }
 8 void init_union_find(){//将每个节点当作根节点
 9     for(int i=1;i<=n;++i)father[i]=i;
10 }
11 int find_father(int x){//递归查找根节点
12     if(father[x]==x)return x;
13     else return father[x]=find_father(father[x]);
14 }
15 void unite(int x,int y,int z){
16     x=find_father(x);
17     y=find_father(y);
18     if(x!=y){//如果边的两端点的根节点不相同,即分别为非连通图,则可以归并
19         sum+=z;//加上最小权值
20         father[x]=y;//将x的父节点改成y
21     }
22 }
23 int main()
24 {
25     while(~scanf("%d",&n) && n){
26         for(int i=1;i<=n*(n-1)/2;++i)
27             scanf("%d %d %d",&es[i].u,&es[i].v,&es[i].cost);
28         sort(es+1,es+n*(n-1)/2+1,cmp);//权值按从小到大排序
29         sum=0;init_union_find();//初始化
30         for(int i=1;i<=n*(n-1)/2;++i)
31             unite(es[i].u,es[i].v,es[i].cost);
32         printf("%d\n",sum);
33     }
34     return 0;
35 }

 

题解报告:hdu 1233 还是畅通工程

标签:定义   畅通工程   输入   unit   归并   name   inpu   不同的   时间复杂度   

原文地址:https://www.cnblogs.com/acgoto/p/9053764.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!