标签:输出 chosen des struct dfs temp ring cst find
给出一张图,给出q对点,求这两个点间权值最小边最大的路径,输出这个最小边权。
我们先一条一条边建图。当建立的边使得图中形成环时,因为环中的每个节点只考虑是否连通和瓶颈大小,要想互相连通只要一条路就够了,而只有环上的最小边和次小边可能是这条路的瓶颈,且这条路的瓶颈肯定越大越好。故根据贪心,我们可以直接把环中的权值最小边删去。
所以我们就维护一个LCT来随时删边增边,还要用到拆边等方法来统计路径上的值吗?能AC,但太复杂了!
我们从整体考虑,第一段叙述中,每次遇到一个环,其值为S。由于去掉的是最小边,边权w,所以剩余的路径上的边权和S-w是最大的。所以这就是一个最大生成树。所以我们就用Kruskal算法求出最大生成树,再由树上倍增求解即可。注意Kruskal处理的是单向边而不是无向图,所以先Kruskal,再建图。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdarg>
using namespace std;
void _printf(char *format, ...) {
#ifdef _DEBUG
va_list(args);
va_start(args, format);
vprintf(format, args);
va_end(args);
#endif
}
const int MAX_NODE = 10010, MAX_EDGE = 50010 * 2, MAX_LOG = 20, INF = 0x3f3f3f3f;
struct Node;
struct Edge;
struct Node {
Edge *Head;
Node *Elder[MAX_LOG];
Node *Root;
int MinVal[MAX_LOG];
int Depth;
Node *Father;
}_nodes[MAX_NODE];
int _vCount;
struct Edge {
Node *From, *To;
Edge *Next;
int Weight;
Edge(Node *from, Node *to, int w):From(from),To(to),Weight(w),Next(NULL){}
Edge() {}
}_edges[MAX_NODE * 2], tempEdges[MAX_EDGE];
int _eCount, tempeCount;
Edge *NewEdge() {
return _edges + (++_eCount);
}
Edge *AddEdge(Node *from, Node *to, int w) {
Edge *e = NewEdge();
e->To = to;
e->From = from;
e->Weight = w;
e->Next = from->Head;
from->Head = e;
return e;
}
void Build(int uId, int vId, int w) {
tempEdges[++tempeCount] = Edge(_nodes + uId, _nodes + vId, w);
}
int Log2(int x) {
int ans = 0;
while (x >>= 1)
ans++;
return ans;
}
void Dfs(Node *cur) {
int topFa = Log2(cur->Depth);
for (int i = 1; i <= topFa && cur->Elder[i - 1]; i++) {
cur->Elder[i] = cur->Elder[i - 1]->Elder[i - 1];
cur->MinVal[i] = min(cur->MinVal[i - 1], cur->Elder[i - 1]->MinVal[i - 1]);
}
for (Edge *e = cur->Head; e; e = e->Next) {
if (!e->To->Depth) {
e->To->Depth = cur->Depth + 1;
e->To->Elder[0] = cur;
e->To->Root = cur->Root;
e->To->MinVal[0] = e->Weight;
Dfs(e->To);
}
}
}
void DfsStart() {
for (int i = 1; i <= _vCount; i++) {
if (!_nodes[i].Depth) {
_nodes[i].Depth = 1;
_nodes[i].MinVal[0] = INF;
_nodes[i].Root = _nodes + i;
Dfs(_nodes + i);
}
}
}
int Lca(Node *low, Node *high) {
if (low->Root != high->Root)
return -1;
int ans = INF;
if (low->Depth < high->Depth)
swap(low, high);
int len = low->Depth - high->Depth, stepCnt = Log2(len);
for (int k = 0; k <= stepCnt; k++) {
if ((1 << k)&len) {
ans = min(ans, low->MinVal[k]);
low = low->Elder[k];
}
}
if (low == high)
return ans;
for (int k = Log2(low->Depth); k >= 0; k--) {
if (low->Elder[k] != high->Elder[k]) {
ans = min(ans, low->MinVal[k]);
ans = min(ans, high->MinVal[k]);
low = low->Elder[k];
high = high->Elder[k];
}
}
ans = min(ans, low->MinVal[0]);
ans = min(ans, high->MinVal[0]);
return ans;
}
bool CmpEdge(Edge a, Edge b) {
return a.Weight > b.Weight;
}
Node *FindFather(Node *cur) {
return cur == cur->Father ? cur : cur->Father = FindFather(cur->Father);
}
void Join(Node *root1, Node *root2) {
root1->Father = root2;
}
void Kruskal() {
sort(tempEdges + 1, tempEdges + tempeCount + 1, CmpEdge);
for (int i = 1; i <= _vCount; i++)
_nodes[i].Father = _nodes + i;
for (int i = 1; i <= tempeCount; i++) {
Edge e = tempEdges[i];
Node *root1 = FindFather(e.From), *root2 = FindFather(e.To);
if (root1 != root2) {
AddEdge(e.From, e.To, e.Weight);
AddEdge(e.To, e.From, e.Weight);
_printf("chosen %d-%d w %d\n", e.From - _nodes, e.To - _nodes, e.Weight);
Join(root1, root2);
}
}
}
int main() {
int totEdge;
scanf("%d%d", &_vCount, &totEdge);
for (int i = 1; i <= totEdge; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
Build(u, v, w);
}
Kruskal();
DfsStart();
int queryCnt;
scanf("%d", &queryCnt);
while (queryCnt--) {
int u, v;
scanf("%d%d", &u, &v);
printf("%d\n", Lca(_nodes + u, _nodes + v));
}
return 0;
}
标签:输出 chosen des struct dfs temp ring cst find
原文地址:https://www.cnblogs.com/headboy2002/p/9062676.html