码迷,mamicode.com
首页 > 其他好文 > 详细

11.CrawlSpiders

时间:2018-05-21 00:59:05      阅读:175      评论:0      收藏:0      [点我收藏+]

标签:sci   参数之一   pat   进程   设计   line   top   没有   comm   

CrawlSpiders

通过下面的命令可以快速创建 CrawlSpider模板 的代码:

1.scrapy startproject tencentspider

 

 

2.scrapy genspider -t crawl tencent tencent.com

 

上一个案例中,我们通过正则表达式,制作了新的url作为Request请求参数,现在我们可以换个花样...

class scrapy.spiders.CrawlSpider

它是Spider的派生类,Spider类的设计原则是只爬取start_url列表中的网页,而CrawlSpider类定义了一些规则(rule)来提供跟进link的方便的机制,从爬取的网页中获取link并继续爬取的工作更适合。

 

1.爬取腾讯

tencent.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-

import scrapy
# 导入CrawlSpider类和Rule
from scrapy.spiders import CrawlSpider, Rule
# 导入链接规则匹配类,用来提取符合规则的连接
from scrapy.linkextractors import LinkExtractor
from TencentSpider.items import TencentItem

class TencentSpider(CrawlSpider):
    name = "tencent"
    allow_domains = ["hr.tencent.com"]
    start_urls = ["http://hr.tencent.com/position.php?&start=0#a"]

    # Response里链接的提取规则,返回的符合匹配规则的链接匹配对象的列表
    pagelink = LinkExtractor(allow=("start=\d+"))

    rules = [
        # 获取这个列表里的链接,依次发送请求,并且继续跟进,调用指定回调函数处理
        Rule(pagelink, callback = "parseTencent", follow = True)
    ]

    # 指定的回调函数
    def parseTencent(self, response):
        #evenlist = response.xpath("//tr[@class=‘even‘] | //tr[@class=‘odd‘]")
        #oddlist = response.xpath("//tr[@class=‘even‘] | //tr[@class=‘odd‘]")
        #fulllist = evenlist + oddlist
        #for each in fulllist:
        for each in response.xpath("//tr[@class=‘even‘] | //tr[@class=‘odd‘]"):
            item = TencentItem()
            # 职位名称
            item[positionname] = each.xpath("./td[1]/a/text()").extract()[0]
            # 详情连接
            item[positionlink] = each.xpath("./td[1]/a/@href").extract()[0]
            # 职位类别
            item[positionType] = each.xpath("./td[2]/text()").extract()[0]
            # 招聘人数
            item[peopleNum] =  each.xpath("./td[3]/text()").extract()[0]
            # 工作地点
            item[workLocation] = each.xpath("./td[4]/text()").extract()[0]
            # 发布时间
            item[publishTime] = each.xpath("./td[5]/text()").extract()[0]

            yield item

 

CrawlSpider继承于Spider类,除了继承过来的属性外(name、allow_domains),还提供了新的属性和方法:

LinkExtractors

class scrapy.linkextractors.LinkExtractor

Link Extractors 的目的很简单: 提取链接?

每个LinkExtractor有唯一的公共方法是 extract_links(),它接收一个 Response 对象,并返回一个 scrapy.link.Link 对象。

Link Extractors要实例化一次,并且 extract_links 方法会根据不同的 response 调用多次提取链接?

 

class scrapy.linkextractors.LinkExtractor(
    allow = (),
    deny = (),
    allow_domains = (),
    deny_domains = (),
    deny_extensions = None,
    restrict_xpaths = (),
    tags = (a,area),
    attrs = (href),
    canonicalize = True,
    unique = True,
    process_value = None
)

 

主要参数:

  • allow:满足括号中“正则表达式”的值会被提取,如果为空,则全部匹配。

  • deny:与这个正则表达式(或正则表达式列表)不匹配的URL一定不提取。

  • allow_domains:会被提取的链接的domains。

  • deny_domains:一定不会被提取链接的domains。

  • restrict_xpaths:使用xpath表达式,和allow共同作用过滤链接。

rules

在rules中包含一个或多个Rule对象,每个Rule对爬取网站的动作定义了特定操作。如果多个rule匹配了相同的链接,则根据规则在本集合中被定义的顺序,第一个会被使用。

class scrapy.spiders.Rule(
        link_extractor, 
        callback = None, 
        cb_kwargs = None, 
        follow = None, 
        process_links = None, 
        process_request = None
)

 

  • link_extractor:是一个Link Extractor对象,用于定义需要提取的链接。

  • callback: 从link_extractor中每获取到链接时,参数所指定的值作为回调函数,该回调函数接受一个response作为其第一个参数。

    注意:当编写爬虫规则时,避免使用parse作为回调函数。由于CrawlSpider使用parse方法来实现其逻辑,如果覆盖了 parse方法,crawl spider将会运行失败。

  • follow:是一个布尔(boolean)值,指定了根据该规则从response提取的链接是否需要跟进。 如果callback为None,follow 默认设置为True ,否则默认为False。

  • process_links:指定该spider中哪个的函数将会被调用,从link_extractor中获取到链接列表时将会调用该函数。该方法主要用来过滤。

  • process_request:指定该spider中哪个的函数将会被调用, 该规则提取到每个request时都会调用该函数。 (用来过滤request)

爬取规则(Crawling rules)

继续用腾讯招聘为例,给出配合rule使用CrawlSpider的例子:

  1. 首先运行

     scrapy shell "http://hr.tencent.com/position.php?&start=0#a"
    
  2. 导入LinkExtractor,创建LinkExtractor实例对象。:

     from scrapy.linkextractors import LinkExtractor
    
     page_lx = LinkExtractor(allow=(‘position.php?&start=\d+‘))
    

    allow : LinkExtractor对象最重要的参数之一,这是一个正则表达式,必须要匹配这个正则表达式(或正则表达式列表)的URL才会被提取,如果没有给出(或为空), 它会匹配所有的链接?

    deny : 用法同allow,只不过与这个正则表达式匹配的URL不会被提取)?它的优先级高于 allow 的参数,如果没有给出(或None), 将不排除任何链接?

  3. 调用LinkExtractor实例的extract_links()方法查询匹配结果:

     page_lx.extract_links(response)
    
  4. 没有查到:

     []
    
  5. 注意转义字符的问题,继续重新匹配:

     page_lx = LinkExtractor(allow=(‘position\.php\?&start=\d+‘))
     # page_lx = LinkExtractor(allow = (‘start=\d+‘))
    
     page_lx.extract_links(response)

 

CrawlSpider 版本

 

那么,scrapy shell测试完成之后,修改以下代码

 

#提取匹配 http://hr.tencent.com/position.php?&start=\d+的链接
page_lx = LinkExtractor(allow = (start=\d+))

rules = [
    #提取匹配,并使用spider的parse方法进行分析;并跟进链接(没有callback意味着follow默认为True)
    Rule(page_lx, callback = parse, follow = True)
]

 

 

这么写对吗?

 

不对!千万记住 callback 千万不能写 parse,再次强调:由于CrawlSpider使用parse方法来实现其逻辑,如果覆盖了 parse方法,crawl spider将会运行失败。

 

运行:

 scrapy crawl tencent

 

 

Logging

Scrapy提供了log功能,可以通过 logging 模块使用。

可以修改配置文件settings.py,任意位置添加下面两行,效果会清爽很多。

LOG_FILE = "TencentSpider.log"
LOG_LEVEL = "INFO"

Log levels

  • Scrapy提供5层logging级别:

  • CRITICAL - 严重错误(critical)

  • ERROR - 一般错误(regular errors)
  • WARNING - 警告信息(warning messages)
  • INFO - 一般信息(informational messages)
  • DEBUG - 调试信息(debugging messages)

logging设置

通过在setting.py中进行以下设置可以被用来配置logging:

  1. LOG_ENABLED 默认: True,启用logging
  2. LOG_ENCODING 默认: ‘utf-8‘,logging使用的编码
  3. LOG_FILE 默认: None,在当前目录里创建logging输出文件的文件名
  4. LOG_LEVEL 默认: ‘DEBUG‘,log的最低级别
  5. LOG_STDOUT 默认: False 如果为 True,进程所有的标准输出(及错误)将会被重定向到log中。例如,执行 print "hello" ,其将会在Scrapy log中显示。

items.py

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

import scrapy

class TencentItem(scrapy.Item):
    # define the fields for your item here like:
    # 职位名
    positionname = scrapy.Field()
    # 详情连接
    positionlink = scrapy.Field()
    # 职位类别
    positionType = scrapy.Field()
    # 招聘人数
    peopleNum = scrapy.Field()
    # 工作地点
    workLocation = scrapy.Field()
    # 发布时间
    publishTime = scrapy.Field()

 

 pipelines.py

 

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Dont forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html

import json

class TencentPipeline(object):
    def __init__(self):
        self.filename = open("tencent.json", "w")

    def process_item(self, item, spider):
        text = json.dumps(dict(item), ensure_ascii = False) + ",\n"
        self.filename.write(text.encode("utf-8"))
        return item

    def close_spider(self, spider):
        self.filename.close()

 

 2.爬取东莞

dongdong.py

# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from newdongguan.items import NewdongguanItem


class DongdongSpider(CrawlSpider):
    name = dongdong
    allowed_domains = [wz.sun0769.com]
    start_urls = [http://wz.sun0769.com/index.php/question/questionType?type=4&page=]

    # 每一页的匹配规则
    pagelink = LinkExtractor(allow=("type=4"))
    # 每一页里的每个帖子的匹配规则
    contentlink = LinkExtractor(allow=(r"/html/question/\d+/\d+.shtml"))

    rules = (
        # 本案例的url被web服务器篡改,需要调用process_links来处理提取出来的url
        Rule(pagelink, process_links = "deal_links"),
        Rule(contentlink, callback = "parse_item")
    )

    # links 是当前response里提取出来的链接列表
    def deal_links(self, links):
        for each in links:
            each.url = each.url.replace("?","&").replace("Type&","Type?")
        return links

    def parse_item(self, response):
        item = NewdongguanItem()
        # 标题
        item[title] = response.xpath(//div[contains(@class, "pagecenter p3")]//strong/text()).extract()[0]
        # 编号
        item[number] = item[title].split( )[-1].split(":")[-1]
        # 内容,先使用有图片情况下的匹配规则,如果有内容,返回所有内容的列表集合
        content = response.xpath(//div[@class="contentext"]/text()).extract()
        # 如果没有内容,则返回空列表,则使用无图片情况下的匹配规则
        if len(content) == 0:
            content = response.xpath(//div[@class="c1 text14_2"]/text()).extract()
            #"".join(content).strip()把列表转换成字符串,去掉空格
            item[‘content‘] = "".join(content).strip()
        else:
            item[content] = "".join(content).strip()
        # 链接
        item[url] = response.url

        yield item

 items.py

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

import scrapy


class NewdongguanItem(scrapy.Item):
    # define the fields for your item here like:
    # 标题
    title = scrapy.Field()
    # 编号
    number = scrapy.Field()
    # 内容
    content = scrapy.Field()
    # 链接
    url = scrapy.Field()

 3.pipelines.py

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Dont forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html

import codecs
import json

class NewdongguanPipeline(object):
    def __init__(self):
        # 创建一个文件
        self.filename = codecs.open("donggguan.json", "w", encoding = "utf-8")

    def process_item(self, item, spider):
        # 中文默认使用ascii码来存储,禁用后默认为Unicode字符串
        content = json.dumps(dict(item), ensure_ascii=False) + "\n"
        self.filename.write(content)
        return item

    def close_spider(self, spider):
        self.filename.close()

 

11.CrawlSpiders

标签:sci   参数之一   pat   进程   设计   line   top   没有   comm   

原文地址:https://www.cnblogs.com/weihu/p/9065257.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!