码迷,mamicode.com
首页 > 其他好文 > 详细

8-3 下载Google图像识别网络inception-v3并查看结构

时间:2018-05-21 12:24:21      阅读:248      评论:0      收藏:0      [点我收藏+]

标签:ini   分享   ted   print   MIXED   google   port   down   alt   

import tensorflow as tf
import os
import tarfile
import requests

# inception-v3 是googlenet的第三个版本
#inception模型下载地址
#inception_pretrain_model_url = ‘http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz‘
#这里采用手动下载后直接放入下述模型存放地址中。
#模型存放地址, #inception_pretrain_model_dir = "inception_model" #此文件夹如果不存在会自动创建 if not os.path.exists(inception_pretrain_model_dir): os.makedirs(inception_pretrain_model_dir) #获取文件名,以及文件路径 filename = inception_pretrain_model_url.split(/)[-1] filepath = os.path.join(inception_pretrain_model_dir, filename) #下载模型 if not os.path.exists(filepath): print("download: ", filename) r = requests.get(inception_pretrain_model_url, stream=True) with open(filepath, wb) as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) print("finish: ", filename) #解压文件 tarfile.open(filepath, r:gz).extractall(inception_pretrain_model_dir) #模型结构存放文件 log_dir = inception_log if not os.path.exists(log_dir): os.makedirs(log_dir) #classify_image_graph_def.pb为google训练好的模型 inception_graph_def_file = os.path.join(inception_pretrain_model_dir, classify_image_graph_def.pb) #‘classify_image_graph_def.pb‘为inception-v3中训练好的一个模型 with tf.Session() as sess: #创建一个图来存放google训练好的模型 with tf.gfile.FastGFile(inception_graph_def_file, rb) as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name=‘‘) #保存图的结构 writer = tf.summary.FileWriter(log_dir, sess.graph) writer.close()

运行结果输出:

finish:  inception-2015-12-05.tgz
并在inception_model文件夹中产生了如下文件:
技术分享图片

 

在inception_log文件夹中生成如下文件:

技术分享图片

 在cmd中打开tensorboard:

技术分享图片

在chrome中打开localhost:6006,得到GRAPHS:

技术分享图片

inception-v3中最具特色的时mixed层:

技术分享图片

 

 mixed层中有并排四个通道:一个卷积层,两个卷积层,三个卷积层,一个池化层加一个卷积层。

四个并排增加模型的宽度,好几个层串联叠加增加了模型的深度。

也把mixed的结构称为inception结构

 

 

 

8-3 下载Google图像识别网络inception-v3并查看结构

标签:ini   分享   ted   print   MIXED   google   port   down   alt   

原文地址:https://www.cnblogs.com/Josie-chen/p/9065880.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!