码迷,mamicode.com
首页 > 其他好文 > 详细

【NOIP2017提高组模拟12.10】神炎皇

时间:2018-05-21 14:51:41      阅读:181      评论:0      收藏:0      [点我收藏+]

标签:因子   sqrt   arp   string   memset   std   AC   一个   ret   

题目

神炎皇乌利亚很喜欢数对,他想找到神奇的数对。
对于一个整数对(a,b),若满足a+b<=n且a+b是ab的因子,则成为神奇的数对。请问这样的数对共有多少呢?

分析

\(gcd(a,b)=d,a'd=a,b'd=b\)
那么\(a'+b'|a'b'd\)
因为\(gcd(a',b')=1\)
所以\(a'+b'|d\)
又因为\((a'+b')d<=n\)
\(a'+b'=\sqrt n\)
枚举\(a'+b'=i\)
\(d就有\dfrac{n}{i^2}种情况\)
因为\(gcd(a',b')=gcd(a'+b',a')\)
所以\(a'和b'又有\varphi(i)种\)
线筛求\(\varphi()\),时间复杂度\(O(\sqrt n)\)

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=1000000007;
const int N=10000005;
using namespace std;
long long ans;
long long n,qn,r,phi[N],p[N];
bool bz[N];
long long gcd(long long x,long long y)
{
    for(;y;)
    {
        r=x%y;
        x=y;
        y=r;
    }
    return x;
}
int main()
{
    scanf("%lld",&n);
    qn=sqrt(n); 
    phi[1]=1;
    memset(bz,true,sizeof(bz));
    for(long long i=2;i<=qn;i++)
    {
        if(bz[i])  
        {  
            bz[i]=false;  
            p[++p[0]]=i;  
            phi[i]=i-1;  
        }  
        for(long long j=1;j<=p[0] && i*p[j]<=qn;j++)  
        {
            bz[i*p[j]]=false;
            if(i%p[j]) phi[i*p[j]]=phi[i]*(p[j]-1);
            else 
            {
                phi[i*p[j]]=phi[i]*p[j]; 
                break;
            }  
        }
        ans+=(long long)phi[i]*(long long)(n/i/i);  
    } 
    printf("%lld",ans);
}

【NOIP2017提高组模拟12.10】神炎皇

标签:因子   sqrt   arp   string   memset   std   AC   一个   ret   

原文地址:https://www.cnblogs.com/chen1352/p/9066604.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!