码迷,mamicode.com
首页 > 其他好文 > 详细

变分法简介

时间:2014-09-27 02:26:09      阅读:204      评论:0      收藏:0      [点我收藏+]

标签:style   os   使用   ar   strong   for   数据   sp   问题   

本篇文章可以作为变分法的简单入门,包含下面四个部分

  1. 泛函的基本概念
  2. 预备定理
  3. Euler-Lagrange方程的推导
  4. 具体应用

一、泛函的基本概念

  变分法的诞生要追溯到Johann Bernoulli(1667-1748)于1696年提出的“最速降线问题”,这个问题是一个求极值问题,但和普通的函数求极值又有不同,它的目标函数的自变量不是一个数,而是一个函数。由于问题很新颖,很快就引起了一些大家的兴趣,其中Johann的哥哥Jacob Bernoulli(1654-1705)给出了较为一般化的解法,后来Euler(1707~1783)和Lagrange(1736-1813)在此基础上得到了Euler-Lagrange方程,从而给出了这一类问题的通用解法。

  变分法要处理的是函数到实数的映射,这样的映射被称作泛函,由于我们不是要写教科书,所以这里也就不给出精确定义了,就通过下面这个例子来简单说明下。

  设函数$y = f(x) \geq 0$在$[0,1]$上连续,则\begin{align*} Q[f(x)] = \int_0^1 f(x) \mbox{d}x \end{align*}就是一个泛函,它的输入是$[0,1]$上的非负连续函数,输出是$[0,1]$区间上该函数与$x$轴之间围成的面积。

  显然泛函是函数这一概念的推广,唯一的区别就是自变量不同,那么为了求泛函极值,最直接的想法就是套用函数求极值的方法。不过在深入之前,我们需要先简单介绍些泛函的基本概念,包括连续泛函线性泛函泛函极值泛函变分,它们分别对应于连续函数、线性函数、函数极值和函数微分。

  • 连续泛函:对于泛函$Q[y(x)]$,如果当$y(x)$的变化$\delta y(x)$充分小时,$Q$的改变量也可以任意的小,那么就称泛函$Q[y(x)]$是连续的。例如对于泛函\begin{align*} Q[y(x)] = \int_a^b y(x) \mbox{d}x \end{align*}而言,当$y(x) \in C[a,b]$时,$Q[y(x)]$有定义。则对于任意$\epsilon > 0$,只要\begin{align*} \max_{a \leq x \leq b} |y_1(x) - y(x)| < \frac{\epsilon}{b-a} \end{align*}则有\begin{align*} \left| Q[y_1(x)] - Q[y(x)] \right| = \left| \int_a^b \left(y_1(x) - y(x)\right) \mbox{d}x \right| \leq \int_a^b |y_1(x) - y(x)| \mbox{d}x < \int_a^b \frac{\epsilon}{b-a} \mbox{d}x = \epsilon \end{align*}即$Q[y(x)]$是连续泛函。
  • 泛函极值:对于曲线$y(x)$,满足\begin{align*} \max_x \ |y_1(x) - y(x)| \leq \varepsilon \end{align*}的一切连续曲线$y_1(x)$构成的集合就是$y(x)$的$\varepsilon$-邻域,若对于邻域中的任意曲线$y_1(x)$都有\begin{align*} Q[y_1(x)] \leq Q[y(x)] \end{align*}则称泛函$Q[y(x)]$在$y(x)$的某个$\varepsilon$-邻域内取极值。
  • 线性泛函:若对于任意常数$c_1$和$c_2$,$Q[f(x)]$满足\begin{align*} Q[c_1 y_1(x) + c_2 y_2(x)] = c_1 Q[y_1(x)] + c_2 Q[y_2(x)] \end{align*}则称$Q[f(x)]$是连续泛函。
  • 泛函变分:先来看一个例子,设泛函$Q[y(x)] = \int_a^b y^2(x) \mbox{d}x$,函数$y_1(x) = y(x) + \delta y(x)$是对$y(x)$的一个扰动,则$Q[y(x)]$的增量为\begin{align*} \Delta Q & = Q[y_1(x)] - Q[y(x)] = Q[y(x) + \delta y(x)] - Q[y(x)] \\ & = \int_a^b (y(x) + \delta y(x))^2 \mbox{d}x - \int_a^b y^2(x) \mbox{d}x \\ & = \int_a^b 2 y(x) \delta y(x) \mbox{d}x + \int_a^b (\delta y(x))^2 \mbox{d}x \end{align*}可见$\Delta Q$由两部分构成,将第一项记为\begin{align*} \int_a^b 2 y(x) \delta y(x) \mbox{d}x = T[y(x), \delta y(x)] \end{align*}显然当$y(x)$固定时,$T[y(x), \delta y(x)]$是关于$\delta y(x)$的线性泛函。又\begin{align*} \left| \int_a^b (\delta y(x))^2 \mbox{d}x \right| \leq \left( \max_{a \leq x \leq b} |\delta y(x)| \right)^2 (b-a) \end{align*}故对于第二项有\begin{align*} \lim_{\max_{a \leq x \leq b} |\delta y(x)| \rightarrow 0} \frac{\int_a^b (\delta y(x))^2 \mbox{d}x}{\max_{a \leq x \leq b} |\delta y(x)|} & \leq \lim_{\max_{a \leq x \leq b} |\delta y(x)| \rightarrow 0} \frac{\left( \max_{a \leq x \leq b} |\delta y(x)| \right)^2 (b-a)}{\max_{a \leq x \leq b} |\delta y(x)|} \\ & = \lim_{\max_{a \leq x \leq b} |\delta y(x)| \rightarrow 0} \max_{a \leq x \leq b} |\delta y(x)| (b-a) \\ & = 0 \end{align*}即$\int_a^b (\delta y(x))^2 \mbox{d}x$是关于$\delta y(x)$的高阶无穷小,记为$o(\delta y(x))$,于是\begin{align*}\Delta Q = T[y(x), \delta y(x)] + o(\delta y(x)) \end{align*}对比函数微分的概念,可以发现它们是何其地相似。故类似地,我们可以说,若对自变量$y(x)$作微小增量$\delta y(x)$,其相应的泛函值增量$\Delta Q$可以分为两部分,其中第一部分$T[y(x), \delta y(x)]$是关于$\delta y(x)$的线性泛函,第二部分是关于$\delta y(x)$的高阶无穷小,那么就将$T[y(x), \delta y(x)]$称作泛函$Q[y(x)]$的变分。

二、预备定理

  在推导Euler-Lagrange方程前,我们需要如下的预备定理。

  若函数$y = f(x)$在$[a,b]$上连续且\begin{align*} \int_a^b f(x) \eta(x) \mbox{d}x = 0 \end{align*}其中$\eta(x)$在$[a,b]$上有连续导数,$\eta(a) = \eta(b) = 0$且$|\eta(x)| < \epsilon$($\epsilon$为任意正数),那么函数$f(x)$在$[a,b]$上恒等于$0$。

  证明:用反证法,假设存在$x_0 \in (a,b)$使得$f(x_0)>0$,由$f(x)$的连续性知存在正数$\delta$使得当$|x-x_0| < \delta$时有$f(x)>0$。 现作函数\begin{align*} \psi(x) = \begin{cases} 0 & x \in [a, x_0 - \delta] \\ e^{\frac{1}{(x - x_0)^2 - \delta^2}} & x \in (x_0 - \delta, x_0 + \delta) \\ 0 & x \in [x_0 + \delta, b] \end{cases} \end{align*}显然$\psi(a) = \psi(b) = 0$,此外$\psi(x)$在$[a,b]$上有连续导数(这里先做假设,稍后给出证明),又选取合适的$A$可使得$\eta(x) = A \psi(x)$满足$|\eta(x)| < \epsilon$,故这样的$\eta(x)$满足所有条件,于是\begin{align*} \int_a^b f(x) \eta(x) \mbox{d}x = \int_{x_0 - \delta}^{x_0 + \delta} f(x) \eta(x) \mbox{d}x > 0 \end{align*}得出矛盾,故不存在这样的$x_0$,也即$f(x)$在$(a,b)$上不大于$0$,同理可证$f(x)$在$(a,b)$上也不小于$0$,故只可能是$f(x)$在$(a,b)$上恒等于$0$,又由$f(x)$的连续性知$f(a) = f(b) = 0$,故$f(x)$在$[a,b]$上恒为$0$。

  最后证明$\psi(x)$在$[a,b]$上有连续导数,只需考虑$x_0 + \delta$和$x_0 - \delta$这两点即可,具体来说分两步,先证明左右导数相等也即导数存在,再证明导数的左右极限也相等即连续性成立。

  先考虑右导数,易知\begin{align*} \lim_{x \rightarrow (x_0 + \delta)^+} \frac{\psi(x) - \psi(x_0 + \delta)}{x - (x_0 + \delta)} = \lim_{x \rightarrow (x_0 + \delta)^+} \frac{0 - 0}{x - (x_0 + \delta)} = 0 \end{align*}再考虑左导数,易知\begin{align*} \lim_{x \rightarrow (x_0 + \delta)^-} \frac{\psi(x) - \psi(x_0 + \delta)}{x - (x_0 + \delta)} & = \lim_{x \rightarrow (x_0 + \delta)^-} \frac{e^{\frac{1}{(x - x_0)^2 - \delta^2}} - 0}{x - (x_0 + \delta)} \\ & = \lim_{t \rightarrow - \infty} \frac{e^t}{\left( \frac{1}{t} + \delta^2 \right)^{\frac{1}{2}} - \delta} \ \left(t = \frac{1}{(x - x_0)^2 - \delta^2}\right) \\ & =  \lim_{t \rightarrow - \infty} \frac{e^t}{\frac{1}{2} \left( \frac{1}{t} + \delta^2 \right)^{-\frac{1}{2}} \left(-\frac{1}{t^2}\right)} \\ & = \lim_{t \rightarrow - \infty} (-2) e^t t^2 \left( \frac{1}{t} + \delta^2 \right)^{\frac{1}{2}} \end{align*}其中倒数第二个等号由L‘Hospital法则推出。注意\begin{align*} \lim_{t \rightarrow - \infty} \left( \frac{1}{t} + \delta^2 \right)^{\frac{1}{2}} = \delta \end{align*}且\begin{align*} \lim_{t \rightarrow - \infty} e^t t^2 = \lim_{t \rightarrow \infty} \frac{t^2}{e^t} = \lim_{t \rightarrow \infty} \frac{2t}{e^t} = \lim_{t \rightarrow \infty} \frac{2}{e^t} = 0 \end{align*}故左导数也为$0$,由于左右导数相等,因此$\psi(x)$在$x_0 + \delta$导数为$0$。

  下面再证导数的连续性,先考虑右极限,由于当$x > x_0 + \delta$时$\psi(x) \equiv 0$,所以当$x > x_0 + \delta$时$\psi‘(x) \equiv 0$,于是$\lim_{x \rightarrow (x_0 + \delta)^+} \psi‘(x) = 0$。

  再考虑左极限,当$x < x_0 + \delta$时有\begin{align*} \psi‘(x) = e^{\frac{1}{(x - x_0)^2 - \delta^2}} \frac{-2(x - x_0)}{((x - x_0)^2 - \delta^2)^2}\end{align*}于是\begin{align*} \lim_{x \rightarrow (x_0 + \delta)^-} \psi‘(x) & = \lim_{x \rightarrow (x_0 + \delta)^-} e^{\frac{1}{(x - x_0)^2 - \delta^2}} \frac{-2(x - x_0)}{((x - x_0)^2 - \delta^2)^2} \\ & = \lim_{t \rightarrow -\infty} (-2) e^t t^2 \left( \frac{1}{t} + \delta^2 \right)^{\frac{1}{2}} \ \left(t = \frac{1}{(x - x_0)^2 - \delta^2}\right) \\ & = 0 \end{align*}故左右极限也相等,因此$\psi‘(x)$在$x_0 + \delta$处连续,综上$\psi(x)$在$x_0 + \delta$处有连续导数,同理也可证$\psi(x)$ 在$x_0 - \delta$处有连续导数。

三、Euler-Lagrange方程的推导

  有了预备定理,我们转入正题,考虑如下形式的泛函\begin{align*} Q[y(x)] = \int_a^b F(x, y(x), y‘(x)) \mbox{d}x \end{align*}其中$F(x, y(x), y‘(x))$是三个变量的连续函数且当点$x,y$在平面上某个有界域内,$F(x, y(x), y‘(x))$及其直到二阶的偏导数均连续。

  求泛函极值的基本思想还是套用微积分里的Fermat定理,现假设$Q[f(x)]$在$y(x)$处取得极值,任取一个函数$\eta(x)$满足$\eta(a) = \eta(b) = 0$且有连续导数,考虑$y(x)$某个领域内的函数$y_1(x) = y(x) + \alpha \eta(x)$,那么当$\alpha$充分小,应该有$Q[y_1(x)] \leq Q[y(x)]$。由于泛函$Q[y(x) + \alpha \eta(x)] = \psi(\alpha)$也是$\alpha$的函数,于是由Fermat定理知应该有$\psi‘(0) = 0$。

  又\begin{align} \psi‘(0) = \psi‘(\alpha) |_{\alpha = 0} & =  \left. \frac{\mbox{d}}{\mbox{d} \alpha} \left( \int_a^b F(x, y(x) + \alpha \eta(x), y‘(x) + \alpha \eta‘(x)) \mbox{d}x \right) \right|_{\alpha = 0} \nonumber \\ \label{Euler-Lagrange} & = \left. \left( \int_a^b \frac{\mbox{d} F(x, y(x) + \alpha \eta(x), y‘(x) + \alpha \eta‘(x))}{\mbox{d} \alpha} \mbox{d}x \right) \right|_{\alpha = 0} \\ & = \left. \left( \int_a^b F_y \frac{\mbox{d} (y(x) + \alpha \eta(x))}{\mbox{d} \alpha} + F_{y‘} \frac{\mbox{d} (y‘(x) + \alpha \eta‘(x))}{\mbox{d} \alpha} \mbox{d}x \right) \right|_{\alpha = 0} \nonumber \\ & = \left. \left( \int_a^b F_y \eta(x) + F_{y‘} \eta‘(x) \mbox{d}x \right) \right|_{\alpha = 0} \nonumber \\ & = \int_a^b F_y \eta(x) \mbox{d}x + \int_a^b F_{y‘} \eta‘(x) \mbox{d}x \nonumber \\ & = \int_a^b F_y \eta(x) \mbox{d}x + \left. F_{y‘} \eta(x) \right|_a^b - \int_a^b  \eta(x) \mbox{d} F_{y‘} \ (\eta(a) = \eta(b) = 0) \nonumber \\ & = \int_a^b \left( F_y - \frac{\mbox{d} F_{y‘}}{\mbox{d} x} \right) \eta(x) \mbox{d}x \nonumber \end{align}其中(\ref{Euler-Lagrange})式交换了积分和求导的顺序(正确性稍后给出证明)。于是\begin{align*} \int_a^b \left( F_y - \frac{\mbox{d} F_{y‘}}{\mbox{d} x} \right) \eta(x) \mbox{d}x = 0 \end{align*}由预备定理知\begin{align*} F_y = \frac{\mbox{d} F_{y‘}}{\mbox{d} x} \end{align*}这就是Euler-Lagrange方程。

  (\ref{Euler-Lagrange})式中第三个等号可以交换积分和求导的顺序是因为\begin{align*} \frac{\psi(\alpha + \Delta \alpha) - \psi(\alpha)}{\Delta \alpha} & = \frac{Q[y(x) + (\alpha + \Delta \alpha) \eta(x)] - Q[y(x) + \alpha \eta(x)]}{\Delta \alpha} \\ & = \int_a^b \frac{F(x, y(x) + (\alpha + \Delta \alpha) \eta(x), y‘(x) + (\alpha + \Delta \alpha) \eta‘(x)) - F(x, y(x) + \alpha \eta(x), y‘(x) + \alpha \eta‘(x))}{\Delta \alpha} \mbox{d}x \\ & = \int_a^b F_{\alpha}(x, y(x) + (\alpha + \theta \Delta \alpha) \eta(x), y‘(x) + (\alpha + \theta \Delta \alpha) \eta‘(x)) \mbox{d}x \ (\theta \in (0, 1)) \end{align*}其中最后一个等号是因为Lagrange中值定理(所以$F$的连续性和可导性是必须的,否则无法使用中值定理)。于是由$F$各个偏导数的连续性可知对于$\forall \epsilon > 0$,总可以找到充分小的$\Delta \alpha$使得\begin{align*} |F_{\alpha}(x, y(x) + (\alpha + \theta \Delta \alpha) \eta(x), y‘(x) + (\alpha + \theta \Delta \alpha) \eta‘(x)) - F_{\alpha}(x, y(x) + \alpha \eta(x), y‘(x) + \alpha \eta‘(x))| < \epsilon \end{align*}因此\begin{align*} & \ \ \ \ \left| \frac{\psi(\alpha + \Delta \alpha) - \psi(\alpha)}{\Delta \alpha} - \int_a^b F_{\alpha}(x, y(x) + \alpha \eta(x), y‘(x) + \alpha \eta‘(x)) \mbox{d}x \right| \\ & \leq \int_a^b |F_{\alpha}(x, y(x) + (\alpha + \theta \Delta \alpha) \eta(x), y‘(x) + (\alpha + \theta \Delta \alpha) \eta‘(x)) - F_{\alpha}(x, y(x) + \alpha \eta(x), y‘(x) + \alpha \eta‘(x))| \mbox{d}x \\ & < \epsilon (b - a) \end{align*}当$\epsilon \rightarrow 0$有$\Delta \alpha \rightarrow 0$,于是\begin{align*} \frac{\mbox{d}}{\mbox{d} \alpha} \left( \int_a^b F(x, y(x) + \alpha \eta(x), y‘(x) + \alpha \eta‘(x)) \mbox{d}x \right) = \int_a^b \frac{\mbox{d} F(x, y(x) + \alpha \eta(x), y‘(x) + \alpha \eta‘(x))}{\mbox{d} \alpha} \mbox{d}x \end{align*}

四、具体应用

  下面我们看三个具体的应用。

  • 求连接$(0,0)$和$(1,1)$的所有曲线中长度最短的曲线,借助几何知识可知应该是直线的长度最短,下面我们用变分法来求解,也即求泛函\begin{align*} \int_0^1 \sqrt{1 + y‘^2} \mbox{d}x \end{align*}的极值,记$F(x, y(x), y‘(x)) = \sqrt{1 + y‘^2}$,于是\begin{align*} F_y & = 0 \\ F_{y‘} & = \frac{y‘}{\sqrt{1 + y‘^2}} \end{align*}由Euler-Lagrange方程知\begin{align*} \frac{\mbox{d}}{\mbox{d} x} \left( \frac{y‘}{\sqrt{1 + y‘^2}} \right) = 0 \end{align*}故\begin{align*}\frac{y‘}{\sqrt{1 + y‘^2}} = C \end{align*}其中$C$为某一常数,整理得\begin{align*} y‘ = \pm \frac{c}{\sqrt{1-c^2}} \end{align*}故最优曲线的斜率为常数,也即直线,由边界条件可知是$y = x$。
  • 回归问题的目标函数可以写成\begin{align*} \min_y \ \mathbb{E}[L] = \int_{\boldsymbol{x}} \int_t L(t, y(\boldsymbol{x})) p(\boldsymbol{x},t) \mbox{d} t \mbox{d} \boldsymbol{x} \end{align*}其中$y$是待求的对观测数据的拟合函数,$t$是样本$\boldsymbol{x}$的观测值,$L$是损失函数,目标则是找到最优的$y$使得期望损失最小。特别地,若取损失函数为平方损失,即$L = (y(\boldsymbol{x}) - t)^2$,则记\begin{align*} F(x, y(x), y‘(x)) = \int_t (y(\boldsymbol{x}) - t)^2 p(\boldsymbol{x},t) \mbox{d} t \end{align*}于是\begin{align*} F_y & = \int_t 2 (y(\boldsymbol{x}) - t) p(\boldsymbol{x},t) \mbox{d} t \\ F_{y‘} & = 0 \end{align*}由Euler-Lagrange方程知\begin{align*} \int_t t p(\boldsymbol{x},t) \mbox{d} t = \int_t y(\boldsymbol{x}) p(\boldsymbol{x},t) \mbox{d} t = y(\boldsymbol{x}) p(\boldsymbol{x}) \end{align*}故\begin{align*} y(\boldsymbol{x}) = \frac{\int_t t p(\boldsymbol{x},t) \mbox{d} t}{p(\boldsymbol{x})} = \int_t t p(t | \boldsymbol{x}) \mbox{d} t = \mathbb{E}[t|\boldsymbol{x}]\end{align*}也即对于最小二乘回归,其最优拟合函数是给定输入的条件期望
  • 对于任意满足如下限制条件\begin{align} \label{Gauss 1} \int_{-\infty}^\infty p(x) \mbox{d}x & = 1 \\ \label{Gauss 2} \int_{-\infty}^\infty x p(x) \mbox{d}x & = \mu \\ \label{Gauss 3} \int_{-\infty}^\infty (x - \mu)^2 p(x) \mbox{d}x & = \sigma^2 \end{align}的概率分布,其中使得熵最大的是正态分布
    由于是约束优化问题,引入Lagrange乘子$\lambda_1$,$\lambda_2$和$\lambda_3$,目标函数可写为\begin{align*} \min_{p(x)} \ \int_{-\infty}^\infty p(x) \ln p(x) \mbox{d}x - \lambda_1 \left( \int_{-\infty}^\infty p(x) \mbox{d}x - 1 \right) - \lambda_2 \left( \int_{-\infty}^\infty x p(x) \mbox{d}x - \mu \right) - \lambda_3 \left( \int_{-\infty}^\infty (x - \mu)^2 p(x) \mbox{d}x - \sigma^2 \right) \end{align*}将关于$p(x)$的项单独提出来记为$F(x, p(x), p‘(x))$,则\begin{align*} F(x, p(x), p‘(x)) = p(x) \ln p(x) - \lambda_1 p(x) - \lambda_2 x p(x) - \lambda_3 (x - \mu)^2 p(x) \end{align*}于是\begin{align*} F_p & = \ln p(x) + 1 - \lambda_1 - \lambda_2 x - \lambda_3 (x - \mu)^2 \\ F_{p‘} & = 0 \end{align*}由Euler-Lagrange方程知\begin{align} \label{Gauss 4} p(x) = \mbox{exp} (- 1 + \lambda_1 + \lambda_2 x + \lambda_3 (x - \mu)^2) \end{align} 将(\ref{Gauss 4})回代入(\ref{Gauss 1})、(\ref{Gauss 2})、(\ref{Gauss 3})并令$y = x - \mu$可得\begin{align} \label{Gauss 5} \int_{-\infty}^\infty \mbox{exp} (- 1 + \lambda_1 + \lambda_2 (y + \mu) + \lambda_3 y^2) \mbox{d}y & = 1 \\ \label{Gauss 6} \int_{-\infty}^\infty (y + \mu) \mbox{exp} (- 1 + \lambda_1 + \lambda_2 (y + \mu) + \lambda_3 y^2) \mbox{d}y & = \mu \\ \label{Gauss 7} \int_{-\infty}^\infty y^2 \mbox{exp} (- 1 + \lambda_1 + \lambda_2 (y + \mu) + \lambda_3 y^2) \mbox{d}y & = \sigma^2 \end{align}(\ref{Gauss 6})$ - \mu$(\ref{Gauss 5})可得\begin{align} \label{Gauss 8}\int_{-\infty}^\infty y \mbox{exp} ( -1 + \lambda_1 + \lambda_2 \mu + \lambda_2 y + \lambda_3 y^2) \mbox{d}y = 0 \end{align}将其中的非零常数项$\mbox{exp} (- 1 + \lambda_1 + \lambda_2 \mu)$丢掉,然后$2 \lambda_3$(\ref{Gauss 8})$+ \lambda_2 $(\ref{Gauss 5})可得\begin{align*} \lambda_2 = \int_{-\infty}^\infty (\lambda_2 + 2 \lambda_3 y) \mbox{exp} (\lambda_2 y + \lambda_3 y^2) \mbox{d}y = \lim_{y \rightarrow \infty} \mbox{exp} (\lambda_2 y + \lambda_3 y^2) - \lim_{y \rightarrow -\infty} \mbox{exp} (\lambda_2 y + \lambda_3 y^2) \end{align*}注意$\lambda_2$和$\lambda_3$都是有限常数,因此随着$y$趋向无穷,$\lambda_2 y + \lambda_3 y^2$要么趋向$\infty$,要么趋向$-\infty$,又\begin{align*} \lim_{x \rightarrow \infty} \mbox{exp} (x) & = \infty, \ \lim_{x \rightarrow -\infty} \mbox{exp} (x) = 0 \end{align*}因此只可能是$\lambda_2 = 0$且\begin{align*} \lim_{y \rightarrow \infty} \lambda_2 y + \lambda_3 y^2 & = -\infty, \ \lim_{y \rightarrow -\infty} \lambda_2 y + \lambda_3 y^2 = -\infty \end{align*}故$\lambda_3 < 0$。此时,由(\ref{Gauss 5})可知\begin{align*} 1 & = \int_{-\infty}^\infty \mbox{exp} (- 1 + \lambda_1 + \lambda_3 y^2) \mbox{d}y \\ & = \mbox{exp} (- 1 + \lambda_1) \int_{-\infty}^\infty \mbox{exp} \left( -\frac{(\sqrt{-2 \lambda_3} y)^2}{2} \right) \mbox{d}y \\ & = \mbox{exp} (- 1 + \lambda_1) \frac{1}{\sqrt{-2 \lambda_3}} \int_{-\infty}^\infty \mbox{exp} \left( -\frac{z^2}{2} \right) \mbox{d}z \ \left( z = \sqrt{-2 \lambda_3} y \right) \\ & =  \mbox{exp} (- 1 + \lambda_1) \frac{\sqrt{2 \pi}}{\sqrt{-2 \lambda_3}}\end{align*}于是\begin{align} \label{Gauss 9} \mbox{exp} (- 1 + \lambda_1) = \sqrt{-\frac{\lambda_3}{\pi}} \end{align}由(\ref{Gauss 7})可知\begin{align*} \sigma^2 & = \sqrt{-\frac{\lambda_3}{\pi}} \int_{-\infty}^\infty y^2 \mbox{exp} (\lambda_3 y^2) \mbox{d}y \\ & = 2 \sqrt{-\frac{\lambda_3}{\pi}} \int_0^\infty y^2 \mbox{exp} (\lambda_3 y^2) \mbox{d}y \\ & = \sqrt{-\frac{\lambda_3}{\pi}} \frac{1}{\lambda_3} \int_0^\infty y (2 \lambda_3 y \mbox{exp} (\lambda_3 y^2)) \mbox{d}y \\ & = \left. \sqrt{-\frac{\lambda_3}{\pi}} \frac{y \mbox{exp} (\lambda_3 y^2)}{\lambda_3} \right|_0^\infty - \sqrt{-\frac{\lambda_3}{\pi}} \frac{1}{\lambda_3} \int_0^\infty \mbox{exp} (\lambda_3 y^2) \mbox{d}y \\ & = - \sqrt{-\frac{\lambda_3}{\pi}} \frac{1}{\lambda_3} \frac{1}{2} \sqrt{-\frac{\pi}{\lambda_3}} \\ & = -\frac{1}{2 \lambda_3} \end{align*}于是\begin{align} \label{Gauss 10} \lambda_3 = - \frac{1}{2 \sigma^2} \end{align}将(\ref{Gauss 9})和(\ref{Gauss 10})代入(\ref{Gauss 4})可得\begin{align*} p(x) = \mbox{exp} (- 1 + \lambda_1 + \lambda_3 (x - \mu)^2) = \sqrt{-\frac{\lambda_3}{\pi}} \mbox{exp} (\lambda_3 (x - \mu)^2) = \frac{1}{\sqrt{2 \pi \sigma^2}} \mbox{exp} \left( - \frac{(x - \mu)^2}{2 \sigma^2} \right)\end{align*}

变分法简介

标签:style   os   使用   ar   strong   for   数据   sp   问题   

原文地址:http://www.cnblogs.com/murongxixi/p/3995788.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!