标签:most text 分享图片 color www 中文 htm lan city
对于信号处理来说,有一类信号是非常重要的,这类信号就是随机信号(random signal),也被称为随机过程(random processes/stochastic processes)。在各种书籍当中,似乎随机过程(random processes)这种称呼更为常见,因此我们下面也称之为随机过程。本文学习思路如下:
在之前随机变量的文章中,我们引入了随机变量,随机变量把实验(experiment)的输出(outcome)映射到数字,以便进行数学上的运算,而更重要的是,随机变量都会有它自己的PDF/PMF,而PDF/PMF展示出了该实验的可能性的输出,以及各个输出的概率。
采用与随机变量相同的思想,那么从总体上看,随机过程可以表示为:列出随机过程所有可能的输出以及每个输出对应的概率。假设随机过程$X(t)$有$N$个可能的输出,分别$x_1(t),x_2(t),\cdot\cdot\cdot,x_N(t)$,这些输出都是确定的(非随机的)信号,我们称这些输出为realization,而各个输出的的概率为$p_1,p_2,\cdot\cdot\cdot,p_N$,这些概率之和为1。通常有$N=\infty$。
如果专注于随机过程在某个时间点上的值,那么这个这个值就是一个随机变量:
也就是说,随着$t$或者$n$的变化,随机过程可以得到不同的随机变量。
比如说有一个随机过程$X(t)$,时间点位于$t_1,t_2,\cdot\cdot\cdot,t_{\ell}$上的值分别为随机变量$X(t_1),X(t_2),\cdot\cdot\cdot,X(t_{\ell})$。此时可以用Joint PDF来表示这$\ell$个随机变量的概率状况。
$f_{X(t_1),X(t_2),\cdot\cdot\cdot,X(t_{\ell})}(x_1,x_2,\cdot\cdot\cdot,x_{\ell})$
那么整个随机过程就可以看作是用$t$或者$n$作为索引的无限多个随机变量的联合分布。
由前文可知,随机过程在不同的时间点会有不同的随机变量,那么对于这些随机变量,我们就能套用概率模型的相关定义
$\begin{align*}
&Mean/Expectation:&\mu_X(t_i) &= E[X(t_i)]\\
&Auto-correlation:&R_{XX}(t_i,t_j)&=E[X(t_i)X(t_j)]\\
&Auto-covariance:&C_{XX}(t_i,t_j) &= E[X(t_i)-\mu_X(t_i)]E[X(t_j)-\mu_X(t_j)]\\
& & &=R_{XX}(t_i,t_j)-\mu_X(t_i)\mu_X(t_j)
\end{align*}$
上面的式子分别为:
此外,相关性以及协方差也能应用在不同的随机过程上
$\begin{align*}
&Cross-correlation:&R_{XY}(t_i,t_j)&=E[X(t_i)Y(t_j)]\\
&Cross-covariance:&C_{XY}(t_i,t_j) &= E[X(t_i)-\mu_X(t_i)]E[Y(t_j)-\mu_Y(t_j)]\\
& & &=R_{XY}(t_i,t_j)-\mu_X(t_i)\mu_Y(t_j)
\end{align*}$
上面的式子分别为:
假设从随机过程$X(t)$中采样得到的随机变量所组成的集合为$S_X = \Big\{X(t_1),X(t_2),\cdot\cdot\cdot,X(t_k)\Big\}$,从随机过程$Y(t)$中采样所得到的随机变量所组成的集合为$S_Y=\Big\{Y(t_1‘),Y(t_2‘),\cdot\cdot\cdot,Y(t_{\ell})\Big\}$,如果所有的$S_X$与$S_Y$都相互独立,则称这两个随机过程相互独立。用Joint PDF表示如下:
$\begin{align*}&\qquad f_{X(t_1),\cdot\cdot\cdot,X(t_k),Y(t_1‘),\cdot\cdot\cdot,Y(t_{\ell}‘)}(x_1,\cdot\cdot\cdot,x_k,y_1,\cdot\cdot\cdot,y_{\ell})\\ &=f_{X(t_1),\cdot\cdot\cdot,X(t_k)}(x_1,\cdot\cdot\cdot,x_k)\cdot f_{Y(t_1‘),\cdot\cdot\cdot,Y(t_{\ell}‘)}(y_1,\cdot\cdot\cdot,y_{\ell})
\end{align*}$
如果随机过程$X(t)$与$Y(t)$相互独立的话,那么随机变量$X(t_i)$与$Y(t_j)$也会相互独立,那么就有$R_{XY}(t_i,t_j) = \mu_X(t_i)\mu_Y(t_j)$,因此$C_{XY}(t_i,t_j)=0$。
Ensemble是随机过程中经常出现的一个概念,英文直译过来的意思就是全体/总体。我们这一小节主要目的是厘清ensemble相关的概念。
下面一句话是对随机过程中Ensemble of signals的定义:
Ensemble of Signals The collection of signals that can be produced by the random process is referred to as the ensemble of signals in the random process.
信号集 随机过程所能产生的信号的集合,我们称之为随机过程的信号集。
也就是说一个随机过程的所有realization的集合就是这个随机过程的信号集。
Ensemble Member指的是这个集合内的成员,在随机过程中指的就是realization。
Ensemble Average就是把随机过程中所有的realization相加然后求平均。
$\displaystyle{\mu_X(t) = E\{X(t)\} = \sum_{n=1}^{\infty}x_n(t)}$
其中$x_n(t)$就是随机过程$X(t)$中的realization。
对于任意值$k$,以及$k$个任意时间点$t_1,\cdot\cdot\cdot,t_k$,随机过程$X(t)$在这$k$个时间点上所采样得到的随机变量分别为$X(t_1),\cdot\cdot\cdot,X(t_k)$,这$k$个随机变量所组成的Joint PDF为
$f_{X(t_1),\cdot\cdot\cdot,X(t_k)}(x_1,\cdot\cdot\cdot,x_k)$
这个Joint PDF的值取决于我们在随机过程$X(t)$上所选择的采样点$t_1,\cdot\cdot\cdot,t_k$。我们对这$k$个采样点进行大小为$\tau$的位移,有$t_1+\tau,\cdot\cdot\cdot,t_k+\tau$,那么此时在随机过程$X(t)$上所采样得到的随机变量为$X(t_1+\tau),\cdot\cdot\cdot,X(t_k+\tau)$,这些随机变量所组成的Joint PDF为
$f_{X(t_1+\tau),\cdot\cdot\cdot,X(t_k+\tau)}(x_1,\cdot\cdot\cdot,x_k)$
如果对于任意的$\tau$,都有
$f_{X(t_1),\cdot\cdot\cdot,X(t_k)}(x_1,\cdot\cdot\cdot,x_k)=f_{X(t_1+\tau),\cdot\cdot\cdot,X(t_k+\tau)}(x_1,\cdot\cdot\cdot,x_k)$
则称该随机过程是Strict-Sense Stationarity(SSS),中文称为强平稳。
independent and identically distributed(i.i.d.)process就是一个很常见的SSS随机过程。其中
对于一个i.i.d. process,假设该process内的随机变量的PDF都为$f_X(x)$,那么这些随机变量的Joint PDF为
$f_{X(t_1),x(t_2),\cdot\cdot\cdot,X(t_k)}(x_1,\cdot\cdot\cdot,x_k)=f_X(x_1)f_X(x_2)\cdot\cdot\cdot f_X(x_k)$
同样也有
$f_{X(t_1+\tau),X(t_2+\tau),\cdot\cdot\cdot,X(t_k+\tau)}(x_1,\cdot\cdot\cdot,x_k)=f_X(x_1)f_X(x_2)\cdot\cdot\cdot f_X(x_k)$
因此i.i.d. process是SSS的。
在离散时间信号传输过程中出现的加性噪声(added noice)就是一个i.i.d. process。
Wide-Sense Stationarity(WSS)又被称为Weak-Sense Stationarity,中文叫做弱平稳。一个WSS的随机过程需要满足两个条件:
$\begin{align*}R_{XX}(t_1,t_2) &= R_{XX}(t_1+\alpha,t_2+\alpha) \quad for\ every\ \alpha\\&= R_{XX}(t_1-t_2, 0)\end{align*}$
$\begin{align*}C_{XX}(t_1,t_2) &= C_{XX}(t_1+\alpha,t_2+\alpha) \quad for\ every\ \alpha\\&= C_{XX}(t_1-t_2, 0)\end{align*}$
同时,从第二个条件能引申出:随机过程在任意采样点上的随机变量的variance都与时间无关:
$\begin{align*}C_{XX}(t,t) &= C_{XX}(t+\alpha,t+\alpha) \quad for\ every\ \alpha\\&= C_{XX}(0, 0)\\&=\sigma_X\end{align*}$
如果要表示两个随机过程$X(t)$与$Y(t)$之间的平稳状况,可以用Jointly WSS(联合弱平稳)。Jointly WSS除了要求两个随机过程都是WSS之外,还需要它们满足
$\begin{align*}R_{XY}(t_1,t_2) &= R_{XY}(t_1+\alpha,t_2+\alpha) \quad for\ every\ \alpha\\&= R_{XY}(t_1-t_2, 0)\end{align*}$
对于WSS的随机过程,由于correlation以及covariance只与所选择的采样点的时间差相关,因此我们可以进行符号简化。令$\tau = t_1-t_2$,即$R_{XX}(t_1,t_2) = R_{XX}(t_2+\tau, t_2)$,我们简化成$R_{XX}(\tau)$。我们这里再用小写的$x(t)$来表示随机过程$X(t)$(When considering just first and second moments and not entire PDFs or CDFs, it will be less important to distinguish between the random process X(t) and a specific realization x(t) of it — so we shall go one step further in simplifying notation, by using lower case letters to denote the random process itself.),因此correlation可以简化为
$\color{red}{R_{xx}(\tau) = E\Big\{x(t+\tau)x(t)\Big\}}$
covariation可以简化为
$\color{red}{C_{xx}(\tau) = E\Big\{x(t+\tau)x(t)\Big\}-\mu_x^2}$
利用R_{xx}(\tau)以及$C_{xx}(\tau)$的定义很容易证明以下性质。
$\begin{align*}
R_{xx}(\tau) = R_{xx}(-\tau), \qquad\qquad C_{xx}(\tau)=C_{xx}(-\tau)\\
R_{xy}(\tau) = R_{yx}(-\tau), \qquad\qquad C_{xy}(\tau)=C_{yx}(-\tau)
\end{align*}$
两个随机变量的相关系数为$|\rho| = \left|\frac{C_{xx}(\tau)}{\sigma_t\sigma_{t+\tau}}\right|\leq 1$,又因为在WSS随机过程中$\sigma_t=\sigma_{t+\tau}=\sigma_x$,所以把分式的分母移到不等号的另一边就能得到下面性质
$-C_{xx}(0)\leq C_{xx}(\tau)\leq C_{xx}(0)$
把第二条性质的三个项都加上$\mu_x^2$就能得到下面的这第三条性质
$-R_{xx}(0)+2\mu_x^2\leq R_{xx}(\tau) \leq R_{xx}(0)$
在讨论ergodicity的定义前,我们先了解一下引入ergodicity的原因:
因此,如果随机过程的一个输出就能表达出该随机过程的大部分特性的话,在对该随机过程进行分析时将会更加有效快捷。
If the random process is such that the behavior of almost every particular realization over time is representative of the behavior down the ensemble, then the process is called ergodic.
如果一个随机过程的所有realization在时域上所表现出来的特性可以代表该随机过程的总体特性的话,那么该随机过程就被称为ergodic。
在众多类型的随机过程当中,我们主要关注的就是WSS,这也是信号处理中最常见的随机过程。因此我们这里讨论的就是WSS的两个特性:expectation、correlation。
WSS随机过程的ensemble average是一个固定值,该随机过程的所有realization的时域expectation也同样等于该固定值,即
$\displaystyle{\color{red}{E\{x(t)\}}=\sum_{n=1}^{\infty}x_n(t) =\color{red}{ \lim_{T\to \infty}\frac{1}{2T}\int_{-T}^{T}x(t)dt} =\mu_x}$
上述式子内的$E\{x(t)\}$中的$x(t)$代表的是随机过程,式子内其余的$x(t)$是realization。
而correlation原本是两个随机变量乘积的期望,即$R_{xx}(\tau) = E\{x(t)x(t+\tau)\}$。而如果所面对的是一个ergodic随机过程的话,那么该随机过程的correlation可以用其realization乘以时移realization的所得到的值的expectation进行代替,即
$\color{red}{\displaystyle{R_{xx}(\tau) = \lim_{T\to\infty}\frac{1}{2T}\int_{-T}^{T}x(t)x(t+\tau)dt}}$
上面式子中,等号右边的$x(t)$代表的是realization。
虽然要证明一个随机过程是ergodic是非常困难的,不过ergodicity在进行随机过程分析时却是相当方便的,所以我们在实际应用中常假设随机变量为ergodic再展开分析。
Reference:
Alan V. Oppenheim: Signals, Systems and Inference, Chapter 9:Random Process
标签:most text 分享图片 color www 中文 htm lan city
原文地址:https://www.cnblogs.com/TaigaCon/p/9074973.html