标签:row default camera2 棋盘 end 相等 extractor ace jpg
1 #include <iostream> 2 #include <opencv2/core/core.hpp> 3 #include <opencv2/features2d/features2d.hpp> 4 #include <opencv2/highgui/highgui.hpp> 5 6 using namespace std; 7 using namespace cv; 8 9 // the IntrinsicMatrix of the left camera 10 11 const Mat IntrinsicMatrix = (Mat_<double>(3, 3) << 806.253555589359 , 0, 311.16780116005, 12 0, 805.667519352931 , 244.341382241868, 13 0 , 0, 1); 14 15 16 17 18 19 // baseline 20 //stereoParams.TranslationOfCamera2 里第一个参数,注意双目标定时候,务必设置准确棋盘实际宽度 21 double baseline = 88.8804297376557;//绝对值 22 int main() 23 { 24 Mat img_1 = imread("Left.jpg", CV_LOAD_IMAGE_COLOR); 25 Mat img_2 = imread("Right.jpg", CV_LOAD_IMAGE_COLOR); 26 27 //-- 初始化 28 std::vector<KeyPoint> keypoints_1, keypoints_2; 29 Mat descriptors_1, descriptors_2; 30 Ptr<FeatureDetector> detector = ORB::create(5); 31 Ptr<DescriptorExtractor> descriptor = ORB::create(5); 32 33 Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming"); 34 35 //-- 第一步:检测 Oriented FAST 角点位置 36 detector->detect(img_1, keypoints_1); 37 detector->detect(img_2, keypoints_2); 38 39 //-- 第二步:根据角点位置计算 BRIEF 描述子 40 descriptor->compute(img_1, keypoints_1, descriptors_1); 41 descriptor->compute(img_2, keypoints_2, descriptors_2); 42 43 Mat outimg1, outimg2; 44 drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT); 45 drawKeypoints(img_2, keypoints_2, outimg2, Scalar::all(-1), DrawMatchesFlags::DEFAULT); 46 imshow("ORB特征点-left", outimg1); 47 imshow("ORB特征点-right", outimg2); 48 //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 49 vector<DMatch> matches; 50 //BFMatcher matcher ( NORM_HAMMING ); 51 matcher->match(descriptors_1, descriptors_2, matches); 52 53 //-- 第四步:匹配点对筛选 54 double min_dist = 10000, max_dist = 0; 55 56 //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 57 for (int i = 0; i < descriptors_1.rows; i++) 58 { 59 double dist = matches[i].distance; 60 if (dist < min_dist) min_dist = dist; 61 if (dist > max_dist) max_dist = dist; 62 } 63 64 //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. 65 std::vector< DMatch > good_matches; 66 for (int i = 0; i < descriptors_1.rows; i++) 67 { 68 if (matches[i].distance <= max(2 * min_dist, 30.0)) 69 { 70 good_matches.push_back(matches[i]); 71 } 72 } 73 74 //-- 第五步:绘制匹配结果 75 Mat img_match; 76 Mat img_goodmatch; 77 drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match); 78 drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch); 79 imshow("所有匹配点对", img_match); 80 imshow("优化后匹配点对", img_goodmatch); 81 82 83 if (1 <= good_matches.size()) 84 { 85 Point2d pointleft = keypoints_1[good_matches[0].queryIdx].pt; 86 cout << "point of the left : " << pointleft.x << " ," << pointleft.y << endl; 87 Point2d pointright = keypoints_2[good_matches[0].trainIdx].pt; 88 cout << "point of the Right : " << pointright.x << " ," << pointright.y << endl; 89 90 //视差 91 double disparty = abs(pointleft.x - pointright.x); 92 cout << "disparty of two points :" << disparty << endl; 93 94 //参数读取 fx cx fy cy 95 const double fx = IntrinsicMatrix.at<double>(0, 0); 96 const double cx = IntrinsicMatrix.at<double>(0, 2); 97 const double fy = IntrinsicMatrix.at<double>(1, 1); 98 const double cy = IntrinsicMatrix.at<double>(1, 2); 99 cout << fx<<"," << cx <<","<< fy<<"," << cy << endl; 100 101 //焦距: f = (fx + fy)/2 102 double f = (fx + fy) / 2.0; 103 cout << "focal length = " << f << endl; 104 105 //计算点到左边相机光心的 z 坐标 106 //公式: disparty * z = f * baseline (依次:视差、z坐标、焦距、基线; 单位:像素、mm、像素、mm) 107 double Z = (f * baseline) / disparty; 108 cout << "Z = " << Z << endl; 109 110 // Z*u fx 0 cx | X X = (Z*u - cx*Z)/fx 111 // Z*v = 0 fy cy | Y => Y = (Z*v - cy*Z)/fy 112 // Z 0 0 1 | Z 113 114 double X = (pointleft.x - cx)*Z / fx; 115 double Y = (pointleft.y - cy)*Z / fy; 116 cout << "3D = " << "[" << X << "," << Y << "," << Z << "]" << endl; 117 118 119 120 //test 121 122 Point2d pointLeft_(581.535006749608, 155.058265533219); 123 Point2d pointRight_(505.767095783631, 138.316326128893); 124 125 double disparty_ = abs(pointRight_.x - pointLeft_.x); 126 double Z_ = (f * baseline) / disparty_; 127 double X_ = (pointLeft_.x - cx)*Z_ / fx; 128 double Y_ = (pointLeft_.y - cy)*Z_ / fy; 129 cout << "test 3D = " << "[" << X_ << "," << Y_ << "," << Z_ << "]" << endl; 130 131 } 132 133 134 waitKey(0); 135 return 0; 136 }
baseline 是matlab标定得出数据集中stereoParams.TranslationOfCamera2(是一个3维向量)的第一个元素
比如:以左边相机坐标系为世界坐标系,那个左边相机光心在此坐标系的坐标是
stereoParams.TranslationOfCamera2 =
[-154.991555371036 -1.15364615812498 16.6412087248481]
所以要想双目测距精度高,你还是要矫正右边的点之后,再求视差,因为就像你不能保证两个相机焦距严格相等一样,你不能保证两个相机光轴平行
(实际上是不能保证两个相机坐标系x轴共线,y、z轴平行)
标签:row default camera2 棋盘 end 相等 extractor ace jpg
原文地址:https://www.cnblogs.com/winslam/p/9091064.html