标签:定位 前序遍历 导图 .com null 自动 小结 部分 out
各种查找的时间复杂度,ASL成功,不成功。都要体现。
//1.定义和初始化
vector<int> vec1; //默认初始化,vec1为空
vector<int> vec2(vec1); //使用vec1初始化vec2
vector<int> vec3(vec1.begin(),vec1.end());//使用vec1初始化vec2
vector<int> vec4(10); //10个值为0的元素
vector<int> vec5(10,4); //10个值为4的元素
//2.常用操作方法
vec1.push_back(100); //尾部添加元素
int size = vec1.size(); //元素个数
bool isEmpty = vec1.empty(); //判断是否为空
cout<<vec1[0]<<endl; //取得第一个元素
vec1.insert(vec1.end(),5,3); //从vec1.back位置插入5个值为3的元素
vec1.pop_back(); //删除末尾元素
vec1.erase(vec1.begin(),vec1.begin()+2);//删除vec1[0]-vec1[2]之间的元素,不包括vec1[2]其他元素前移
cout<<(vec1==vec2)?true:false; //判断是否相等==、!=、>=、<=...
vector<int>::iterator iter = vec1.begin(); //获取迭代器首地址
vector<int>::const_iterator c_iter = vec1.begin(); //获取const类型迭代器
vec1.clear(); //清空元素
//3.遍历
//下标法
int length = vec1.size();
for(int i=0;i<length;i++)
{
cout<<vec1[i];
}
cout<<endl<<endl;
//迭代器法
vector<int>::iterator iter = vec1.begin();
for(;iter != vec1.end();iter++)
{
cout<<*iter;
}
//1.定义和初始化
list<int> lst1; //创建空list
list<int> lst2(3); //创建含有三个元素的list
list<int> lst3(3,2); //创建含有三个元素为2的list
list<int> lst4(lst2); //使用lst2初始化lst4
list<int> lst5(lst2.begin(),lst2.end()); //同lst4
//2.常用操作方法
lst1.assign(lst2.begin(),lst2.end()); //分配值,3个值为0的元素
lst1.push_back(10); //末尾添加值
lst1.pop_back(); //删除末尾值
lst1.begin(); //返回首值的迭代器
lst1.end(); //返回尾值的迭代器
lst1.clear(); //清空值
bool isEmpty1 = lst1.empty(); //判断为空
lst1.erase(lst1.begin(),lst1.end()); //删除元素
lst1.front(); //返回第一个元素的引用
lst1.back(); //返回最后一个元素的引用
lst1.insert(lst1.begin(),3,2); //从指定位置插入个3个值为2的元素
lst1.rbegin(); //返回第一个元素的前向指针
lst1.remove(2); //相同的元素全部删除
lst1.reverse(); //反转
lst1.size(); //含有元素个数
lst1.sort(); //排序
lst1.unique(); //删除相邻重复元素
//3.遍历
//迭代器法
for(list<int>::const_iterator iter = lst1.begin();iter != lst1.end();iter++)
{
cout<<*iter;
}
//1.定义和初始化
map<int,string> map1; //空map
//2.常用操作方法
map1[3] = "Saniya"; //添加元素
map1.insert(map<int,string>::value_type(2,"Diyabi"));//插入元素
//map1.insert(pair<int,string>(1,"Siqinsini"));
map1.insert(make_pair<int,string>(4,"V5"));
string str = map1[3]; //根据key取得value,key不能修改
map<int,string>::iterator iter_map = map1.begin();//取得迭代器首地址
int key = iter_map->first; //取得key
string value = iter_map->second; //取得value
map1.erase(iter_map); //删除迭代器数据
map1.erase(3); //根据key删除value
map1.size(); //元素个数
map1.empty(); //判断空
map1.clear(); //清空所有元素
//3.遍历
for(map<int,string>::iterator iter = map1.begin();iter!=map1.end();iter++)
{
int keyk = iter->first;
string valuev = iter->second;
}
定义静态全局变量最小值min
if(T为空)
返回真
if(T不为空)
min赋值为T的Data值
判断T的左子树
if(T的Data值小于min)
返回错
判断T的右子树
这样的错误主要是因为只能保证每个节点的都是二叉排序树,但是并没有从整体来考虑。
enum RBTColor{RED, BLACK};
template <class T>
class RBTNode{
public:
RBTColor color; // 颜色
T key; // 关键字(键值)
RBTNode *left; // 左孩子
RBTNode *right; // 右孩子
RBTNode *parent; // 父结点
RBTNode(T value, RBTColor c, RBTNode *p, RBTNode *l, RBTNode *r):
key(value),color(c),parent(),left(l),right(r) {}
};
template <class T>
class RBTree {
private:
RBTNode<T> *mRoot; // 根结点
public:
RBTree();
~RBTree();
// 前序遍历"红黑树"
void preOrder();
// 中序遍历"红黑树"
void inOrder();
// 后序遍历"红黑树"
void postOrder();
// (递归实现)查找"红黑树"中键值为key的节点
RBTNode<T>* search(T key);
// (非递归实现)查找"红黑树"中键值为key的节点
RBTNode<T>* iterativeSearch(T key);
// 查找最小结点:返回最小结点的键值。
T minimum();
// 查找最大结点:返回最大结点的键值。
T maximum();
// 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。
RBTNode<T>* successor(RBTNode<T> *x);
// 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。
RBTNode<T>* predecessor(RBTNode<T> *x);
// 将结点(key为节点键值)插入到红黑树中
void insert(T key);
// 删除结点(key为节点键值)
void remove(T key);
// 销毁红黑树
void destroy();
// 打印红黑树
void print();
private:
// 前序遍历"红黑树"
void preOrder(RBTNode<T>* tree) const;
// 中序遍历"红黑树"
void inOrder(RBTNode<T>* tree) const;
// 后序遍历"红黑树"
void postOrder(RBTNode<T>* tree) const;
// (递归实现)查找"红黑树x"中键值为key的节点
RBTNode<T>* search(RBTNode<T>* x, T key) const;
// (非递归实现)查找"红黑树x"中键值为key的节点
RBTNode<T>* iterativeSearch(RBTNode<T>* x, T key) const;
// 查找最小结点:返回tree为根结点的红黑树的最小结点。
RBTNode<T>* minimum(RBTNode<T>* tree);
// 查找最大结点:返回tree为根结点的红黑树的最大结点。
RBTNode<T>* maximum(RBTNode<T>* tree);
// 左旋
void leftRotate(RBTNode<T>* &root, RBTNode<T>* x);
// 右旋
void rightRotate(RBTNode<T>* &root, RBTNode<T>* y);
// 插入函数
void insert(RBTNode<T>* &root, RBTNode<T>* node);
// 插入修正函数
void insertFixUp(RBTNode<T>* &root, RBTNode<T>* node);
// 删除函数
void remove(RBTNode<T>* &root, RBTNode<T> *node);
// 删除修正函数
void removeFixUp(RBTNode<T>* &root, RBTNode<T> *node, RBTNode<T> *parent);
// 销毁红黑树
void destroy(RBTNode<T>* &tree);
// 打印红黑树
void print(RBTNode<T>* tree, T key, int direction);
#define rb_parent(r) ((r)->parent)
#define rb_color(r) ((r)->color)
#define rb_is_red(r) ((r)->color==RED)
#define rb_is_black(r) ((r)->color==BLACK)
#define rb_set_black(r) do { (r)->color = BLACK; } while (0)
#define rb_set_red(r) do { (r)->color = RED; } while (0)
#define rb_set_parent(r,p) do { (r)->parent = (p); } while (0)
#define rb_set_color(r,c) do { (r)->color = (c); } while (0)
};
/*
* 对红黑树的节点(x)进行左旋转
*
* 左旋示意图(对节点x进行左旋):
* px px
* / /
* x y
* / \ --(左旋)--> / \ #
* lx y x ry
* / \ / * ly ry lx ly
*
*
*/
template <class T>
void RBTree<T>::leftRotate(RBTNode<T>* &root, RBTNode<T>* x)
{
// 设置x的右孩子为y
RBTNode<T> *y = x->right;
// 将 “y的左孩子” 设为 “x的右孩子”;
// 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
x->right = y->left;
if (y->left != NULL)
y->left->parent = x;
// 将 “x的父亲” 设为 “y的父亲”
y->parent = x->parent;
if (x->parent == NULL)
{
root = y; // 如果 “x的父亲” 是空节点,则将y设为根节点
}
else
{
if (x->parent->left == x)
x->parent->left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
else
x->parent->right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
}
// 将 “x” 设为 “y的左孩子”
y->left = x;
// 将 “x的父节点” 设为 “y”
x->parent = y;
}
/*
* 对红黑树的节点(y)进行右旋转
*
* 右旋示意图(对节点y进行左旋):
* py py
* / /
* y x
* / \ --(右旋)--> / \ #
* x ry lx y
* / \ / \ #
* lx rx rx ry
*
*/
template <class T>
void RBTree<T>::rightRotate(RBTNode<T>* &root, RBTNode<T>* y)
{
// 设置x是当前节点的左孩子。
RBTNode<T> *x = y->left;
// 将 “x的右孩子” 设为 “y的左孩子”;
// 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
y->left = x->right;
if (x->right != NULL)
x->right->parent = y;
// 将 “y的父亲” 设为 “x的父亲”
x->parent = y->parent;
if (y->parent == NULL)
{
root = x; // 如果 “y的父亲” 是空节点,则将x设为根节点
}
else
{
if (y == y->parent->right)
y->parent->right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
else
y->parent->left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
}
// 将 “y” 设为 “x的右孩子”
x->right = y;
// 将 “y的父节点” 设为 “x”
y->parent = x;
}
标签:定位 前序遍历 导图 .com null 自动 小结 部分 out
原文地址:https://www.cnblogs.com/lmb171004/p/9092949.html