标签:udp 服务器端 保护 请求 知识 必须 设计模式 元素 sea
客户端/服务器架构 即C/S架构,包括 1.硬件C/S架构(打印机) 2.软件C/S服务架构 (web服务)生活中也有一些C/S架构,例如:饭店为S端,食客为C端,网站S/端,浏览器C端
Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。
所以,我们无需深入理解tcp/udp协议,socket已经为我们封装好了,我们只需要遵循socket的规定去编程,写出的程序自然就是遵循tcp/udp标准的。
也有人将socket说成ip+port,ip是用来标识互联网中的一台主机的位置,而port是用来标识这台机器上的一个应用程序,ip地址是配置到网卡上的,而port是应用程序开启的,ip与port的绑定就标识了互联网中独一无二的一个应用程序 而程序的pid是同一台机器上不同进程或者线程的标识
基于文件类型的套接字家族
套接字家族的名字:AF_UNIX
unix一切皆文件,基于文件的套接字调用的就是底层的文件系统来取数据,两个套接字进程运行在同一机器,可以通过访问同一个文件系统间接完成通信
基于网络类型的套接字家族
套接字家族的名字:AF_INET
(还有AF_INET6被用于ipv6,还有一些其他的地址家族,不过,他们要么是只用于某个平台,要么就是已经被废弃,或者是很少被使用,或者是根本没有实现,所有地址家族中,AF_INET是使用最广泛的一个,python支持很多种地址家族,但是由于我们只关心网络编程,所以大部分时候我么只使用AF_INET)
一个生活中的场景。你要打电话给一个朋友,先拨号,朋友听到电话铃声后提起电话,这时你和你的朋友就建立起了连接,就可以讲话了。等交流结束,挂断电话结束此次交谈。 生活中的场景就解释了这工作原理。
先从服务器端说起。服务器端先初始化Socket,然后与端口绑定(bind),对端口进行监听(listen),调用accept阻塞,等待客户端连接。在这时如果有个客户端初始化一个Socket,然后连接服务器(connect),如果连接成功,这时客户端与服务器端的连接就建立了。客户端发送数据请求,服务器端接收请求并处理请求,然后把回应数据发送给客户端,客户端读取数据,最后关闭连接,一次交互结束
import socket 2 socket.socket(socket_family,socket_type,protocal=0) 3 socket_family 可以是 AF_UNIX 或 AF_INET。socket_type 可以是 SOCK_STREAM 或 SOCK_DGRAM。protocol 一般不填,默认值为 0。 4 5 获取tcp/ip套接字 6 tcpSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 7 8 获取udp/ip套接字 9 udpSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 10 11 由于 socket 模块中有太多的属性。我们在这里破例使用了‘from module import *‘语句。使用 ‘from socket import *‘,我们就把 socket 模块里的所有属性都带到我们的命名空间里了,这样能 大幅减短我们的代码。 12 例如tcpSock = socket(AF_INET, SOCK_STREAM)
服务端套接字函数
s.bind() 绑定(主机,端口号)到套接字
s.listen() 开始TCP监听
s.accept() 被动接受TCP客户的连接,(阻塞式)等待连接的到来
客户端套接字函数
s.connect() 主动初始化TCP服务器连接
s.connect_ex() connect()函数的扩展版本,出错时返回出错码,而不是抛出异常
公共用途的套接字函数
s.recv() 接收TCP数据
s.send() 发送TCP数据(send在待发送数据量大于己端缓存区剩余空间时,数据丢失,不会发完)
s.sendall() 发送完整的TCP数据(本质就是循环调用send,sendall在待发送数据量大于己端缓存区剩余空间时,数据不丢失,循环调用send直到发完)
s.recvfrom() 接收UDP数据
s.sendto() 发送UDP数据
s.getpeername() 连接到当前套接字的远端的地址
s.getsockname() 当前套接字的地址
s.getsockopt() 返回指定套接字的参数
s.setsockopt() 设置指定套接字的参数
s.close() 关闭套接字
面向锁的套接字方法
s.setblocking() 设置套接字的阻塞与非阻塞模式
s.settimeout() 设置阻塞套接字操作的超时时间
s.gettimeout() 得到阻塞套接字操作的超时时间
tcp是基于链接的,必须先启动服务端,然后再启动客户端去链接服务端
tcp服务端
ss = socket() #创建服务器套接字 ss.bind() #把地址绑定到套接字 ss.listen() #监听链接 inf_loop: #服务器无限循环 cs = ss.accept() #接受客户端链接 comm_loop: #通讯循环 cs.recv()/cs.send() #对话(接收与发送) cs.close() #关闭客户端套接字 ss.close() #关闭服务器套接字(可选) 复制代码
cs = socket() # 创建客户套接字 2 cs.connect() # 尝试连接服务器 3 comm_loop: # 通讯循环 4 cs.send()/cs.recv() # 对话(发送/接收) 5 cs.close() # 关闭客户套接字
udp是无链接的,先启动哪一端都不会报错
udp服务端
1 ss = socket() #创建一个服务器的套接字 2 ss.bind() #绑定服务器套接字 3 inf_loop: #服务器无限循环 4 cs = ss.recvfrom()/ss.sendto() # 对话(接收与发送) 5 ss.close() # 关闭服务器套接字
udp客户端
cs = socket() # 创建客户套接字 comm_loop: # 通讯循环 cs.sendto()/cs.recvfrom() # 对话(发送/接收) cs.close() # 关闭客户套接字
让我们基于tcp先制作一个远程执行命令的程序(1:执行错误命令 2:执行ls 3:执行ifconfig)
注意注意注意:
res=subprocess.Popen(cmd.decode(‘utf-8‘),
shell=True,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE)
的结果的编码是以当前所在的系统为准的,如果是windows,那么res.stdout.read()读出的就是GBK编码的,在接收端需要用GBK解码
且只能从管道里读一次结果
注意:命令ls -l ; lllllll ; pwd 的结果是既有正确stdout结果,又有错误stderr结果
#_*_coding:utf-8_*_ from socket import * import subprocess ip_port=(‘127.0.0.1‘,8080) BUFSIZE=1024 tcp_socket_server=socket(AF_INET,SOCK_STREAM) tcp_socket_server.bind(ip_port) tcp_socket_server.listen(5) while True: conn,addr=tcp_socket_server.accept() print(‘客户端‘,addr) while True: cmd=conn.recv(BUFSIZE) if len(cmd) == 0:break res=subprocess.Popen(cmd.decode(‘utf-8‘),shell=True, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE) stderr=act_res.stderr.read() stdout=act_res.stdout.read() conn.send(stderr) conn.send(stdout)
import socket BUFSIZE=1024 ip_port=(‘127.0.0.1‘,8080) s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) res=s.connect_ex(ip_port) while True: msg=input(‘>>: ‘).strip() if len(msg) == 0:continue if msg == ‘quit‘:break s.send(msg.encode(‘utf-8‘)) act_res=s.recv(BUFSIZE) print(act_res.decode(‘utf-8‘),end=‘‘)
上述程序是基于tcp的socket,在运行时会发生粘包
须知:只有TCP有粘包现象,UDP永远不会粘包,为何,且听我娓娓道来
首先需要掌握一个socket收发消息的原理
发送端可以是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈现在内核缓冲区。
例如基于tcp的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看了,根本不知道该文件的字节流从何处开始,在何处结束
所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。
此外,发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个TCP段。若连续几次需要send的数据都很少,通常TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。
udp的recvfrom是阻塞的,一个recvfrom(x)必须对唯一一个sendinto(y),收完了x个字节的数据就算完成,若是y>x数据就丢失,这意味着udp根本不会粘包,但是会丢数据,不可靠
tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。
两种情况下会发生粘包。
发送端需要等缓冲区满才发送出去,造成粘包(发送数据时间间隔很短,数据了很小,会合到一起,产生粘包)
服务端
#_*_coding:utf-8_*_ from socket import * ip_port=(‘127.0.0.1‘,8080) tcp_socket_server=socket(AF_INET,SOCK_STREAM) tcp_socket_server.bind(ip_port) tcp_socket_server.listen(5) conn,addr=tcp_socket_server.accept() data1=conn.recv(10) data2=conn.recv(10) print(‘----->‘,data1.decode(‘utf-8‘)) print(‘----->‘,data2.decode(‘utf-8‘)) conn.close()
客户端
import socket BUFSIZE=1024 ip_port=(‘127.0.0.1‘,8080) s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) res=s.connect_ex(ip_port) s.send(‘hello‘.encode(‘utf-8‘)) s.send(‘feng‘.encode(‘utf-8‘))
接收方不及时接收缓冲区的包,造成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候还是从缓冲区拿上次遗留的数据,产生粘包)
拆包的发生情况
当发送端缓冲区的长度大于网卡的MTU时,tcp会将这次发送的数据拆成几个数据包发送出去。
补充问题一:为何tcp是可靠传输,udp是不可靠传输
基于tcp的数据传输请参考我的另一篇文章http://www.cnblogs.com/linhaifeng/articles/5937962.html,tcp在数据传输时,发送端先把数据发送到自己的缓存中,然后协议控制将缓存中的数据发往对端,对端返回一个ack=1,发送端则清理缓存中的数据,对端返回ack=0,则重新发送数据,所以tcp是可靠的
而udp发送数据,对端是不会返回确认信息的,因此不可靠
补充问题二:send(字节流)和recv(1024)及sendall
recv里指定的1024意思是从缓存里一次拿出1024个字节的数据
send的字节流是先放入己端缓存,然后由协议控制将缓存内容发往对端,如果待发送的字节流大小大于缓存剩余空间,那么数据丢失,用sendall就会循环调用send,数据不会丢失
为字节流加上自定义固定长度报头,报头中包含字节流长度,然后一次send到对端,对端在接收时,先从缓存中取出定长的报头,然后再取真实数据
struct模块
该模块可以把一个类型,如数字,转成固定长度的bytes
>>> struct.pack(‘i‘,1111111111111)
import json,struct #假设通过客户端上传1T:1073741824000的文件a.txt #为避免粘包,必须自定制报头 header={‘file_size‘:1073741824000,‘file_name‘:‘/a/b/c/d/e/a.txt‘,‘md5‘:‘8f6fbf8347faa4924a76856701edb0f3‘} #1T数据,文件路径和md5值 #为了该报头能传送,需要序列化并且转为bytes head_bytes=bytes(json.dumps(header),encoding=‘utf-8‘) #序列化并转成bytes,用于传输 #为了让客户端知道报头的长度,用struck将报头长度这个数字转成固定长度:4个字节 head_len_bytes=struct.pack(‘i‘,len(head_bytes)) #这4个字节里只包含了一个数字,该数字是报头的长度 #客户端开始发送 conn.send(head_len_bytes) #先发报头的长度,4个bytes conn.send(head_bytes) #再发报头的字节格式 conn.sendall(文件内容) #然后发真实内容的字节格式 #服务端开始接收 head_len_bytes=s.recv(4) #先收报头4个bytes,得到报头长度的字节格式 x=struct.unpack(‘i‘,head_len_bytes)[0] #提取报头的长度 head_bytes=s.recv(x) #按照报头长度x,收取报头的bytes格式 header=json.loads(json.dumps(header)) #提取报头 #最后根据报头的内容提取真实的数据,比如 real_data_len=s.recv(header[‘file_size‘]) s.recv(real_data_len)
自定制报头的服务端
import socket,struct,json import subprocess phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM) phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) #就是它,在bind前加 phone.bind((‘127.0.0.1‘,8080)) phone.listen(5) while True: conn,addr=phone.accept() while True: cmd=conn.recv(1024) if not cmd:break print(‘cmd: %s‘ %cmd) res=subprocess.Popen(cmd.decode(‘utf-8‘), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) err=res.stderr.read() print(err) if err: back_msg=err else: back_msg=res.stdout.read() conn.send(struct.pack(‘i‘,len(back_msg))) #先发back_msg的长度 conn.sendall(back_msg) #在发真实的内容 conn.close()
自定制报头客户端
import socket,time,struct s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) res=s.connect_ex((‘127.0.0.1‘,8080)) while True: msg=input(‘>>: ‘).strip() if len(msg) == 0:continue if msg == ‘quit‘:break s.send(msg.encode(‘utf-8‘)) l=s.recv(4) x=struct.unpack(‘i‘,l)[0] print(type(x),x) # print(struct.unpack(‘I‘,l)) r_s=0 data=b‘‘ while r_s < x: r_d=s.recv(1024) data+=r_d r_s+=len(r_d) # print(data.decode(‘utf-8‘)) print(data.decode(‘gbk‘)) #windows默认gbk编码 复制代码
我们可以把报头做成字典,字典里包含将要发送的真实数据的详细信息,然后json序列化,然后用struck将序列化后的数据长度打包成4个字节(4个自己足够用了)
发送时:
先发报头长度
再编码报头内容然后发送
最后发真实内容
接收时:
先手报头长度,用struct取出来
根据取出的长度收取报头内容,然后解码,反序列化
从反序列化的结果中取出待取数据的详细信息,然后去取真实的数据内容
如果你想在分布式系统中实现一个简单的客户端链接认证功能,又不像SSL那么复杂,那么利用hmac+加盐的方式来实现
from socket import *‘ import hmac,os secret_key=b‘linhaifeng bang bang bang‘ def conn_auth(conn): ‘‘‘ 认证客户端链接 :param conn: :return: ‘‘‘ print(‘开始验证新链接的合法性‘) msg=os.urandom(32) conn.sendall(msg) h=hmac.new(secret_key,msg) digest=h.digest() respone=conn.recv(len(digest)) return hmac.compare_digest(respone,digest) def data_handler(conn,bufsize=1024): if not conn_auth(conn): print(‘该链接不合法,关闭‘) conn.close() return print(‘链接合法,开始通信‘) while True: data=conn.recv(bufsize) if not data:break conn.sendall(data.upper()) def server_handler(ip_port,bufsize,backlog=5): ‘‘‘ 只处理链接 :param ip_port: :return: ‘‘‘ tcp_socket_server=socket(AF_INET,SOCK_STREAM) tcp_socket_server.bind(ip_port) tcp_socket_server.listen(backlog) while True: conn,addr=tcp_socket_server.accept() print(‘新连接[%s:%s]‘ %(addr[0],addr[1])) data_handler(conn,bufsize) if __name__ == ‘__main__‘: ip_port=(‘127.0.0.1‘,9999) bufsize=1024 server_handler(ip_port,bufsize)
客户端合法
from socket import * import hmac,os secret_key=b‘linhaifeng bang bang bang‘ def conn_auth(conn): ‘‘‘ 验证客户端到服务器的链接 :param conn: :return: ‘‘‘ msg=conn.recv(32) h=hmac.new(secret_key,msg) digest=h.digest() conn.sendall(digest) def client_handler(ip_port,bufsize=1024): tcp_socket_client=socket(AF_INET,SOCK_STREAM) tcp_socket_client.connect(ip_port) conn_auth(tcp_socket_client) while True: data=input(‘>>: ‘).strip() if not data:continue if data == ‘quit‘:break tcp_socket_client.sendall(data.encode(‘utf-8‘)) respone=tcp_socket_client.recv(bufsize) print(respone.decode(‘utf-8‘)) tcp_socket_client.close() if __name__ == ‘__main__‘: ip_port=(‘127.0.0.1‘,9999) bufsize=1024 client_handler(ip_port,bufsize)
基于tcp的套接字,关键就是两个循环,一个链接循环,一个通信循环
socketserver模块中分两大类:server类(解决链接问题)和request类(解决通信问题)
server类:
request类:
继承关系:
以下述代码为例,分析socketserver源码:
ftpserver=socketserver.ThreadingTCPServer((‘127.0.0.1‘,8080),FtpServer)
ftpserver.serve_forever()
查找属性的顺序:ThreadingTCPServer->ThreadingMixIn->TCPServer->BaseServer
源码分析总结:
基于tcp的socketserver我们自己定义的类中的
基于udp的socketserver我们自己定义的类中的
标签:udp 服务器端 保护 请求 知识 必须 设计模式 元素 sea
原文地址:https://www.cnblogs.com/echoboy/p/9095166.html