码迷,mamicode.com
首页 > 其他好文 > 详细

hdu1693 Eat the Trees 插头dp

时间:2018-05-27 13:51:45      阅读:128      评论:0      收藏:0      [点我收藏+]

标签:c++   ++   cas   \n   ret   using   +=   vector   需要   

题意:有障碍物的多回路的插头dp,求方案数
题解:其实搞懂插头dp的插头方式就和轮廓线dp一样了,因为这题是多回路,不需要单回路的连通性;‘
dp[i][j]表示第i行j状态的方案数
需要注意的是第二维我们维护了m+1个状态,因为对于插头可能会有m+1种情况,对于每一个位置有插头就是1,否则就是0
一共有四种情况:
假设当前位置是障碍物,那么只有没有上插头和左插头的情况能够转移到没有上左插头的情况
假设当前位置不是障碍物,那么

  1. 有上插头和左插头,直接合并两个插头
  2. 有上插头没有左插头,如果能向下,延伸上插头。如果能向右,上插头变成左插头
  3. 没有上插头有左插头,如果能向右,延伸左插头。如果能向下,左插头变成上插头
  4. 没有上左插头,如果能向右和向下,增加一个左插头和上插头
    最后没有上插头和左插头的方案数就是答案
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0)

using namespace std;

const double g=10.0,eps=1e-12;
const int N=(1ll<<12)+10,maxn=1000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;

ll dp[2][N];
int n,m,a[12][12];
ll solve()
{
    memset(dp,0,sizeof dp);
    int now=0,pre=1;
    dp[now][0]=1;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            swap(now,pre);
            memset(dp[now],0,sizeof dp[now]);
            if(a[i][j]==0)
            {
                for(int k=0;k<(1<<(m+1));k++)
                    if((!((k>>m)&1)) && (!(k&1)))
                        dp[now][k<<1]+=dp[pre][k];
                continue;
            }
            for(int k=0;k<(1<<(m+1));k++)
            {
                if(((k>>m)&1) && (!(k&1)))
                {
                    if(j!=m)dp[now][((k^(1<<m))<<1)|1]+=dp[pre][k];
                    if(i!=n)dp[now][((k^(1<<m))<<1)|2]+=dp[pre][k];
                }
                else if((!((k>>m)&1)) && (k&1))
                {
                    if(i!=n)dp[now][k<<1]+=dp[pre][k];
                    if(j!=m)dp[now][(k<<1)^3]+=dp[pre][k];
                }
                else if((!((k>>m)&1)) && (!(k&1)))
                {
                    if(j!=m&&i!=n)dp[now][(k<<1)|3]+=dp[pre][k];
                }
                else
                {
                    dp[now][((k^(1<<m))<<1)^2]+=dp[pre][k];
                }
            }
        }
    }
    return dp[now][0];
}
int main()
{
    int T;scanf("%d",&T);
    for(int _=1;_<=T;_++)
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                scanf("%d",&a[i][j]);
        printf("Case %d: There are %lld ways to eat the trees.\n",_,solve());
    }
    return 0;
}
/***********************

***********************/

hdu1693 Eat the Trees 插头dp

标签:c++   ++   cas   \n   ret   using   +=   vector   需要   

原文地址:https://www.cnblogs.com/acjiumeng/p/9095461.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!