码迷,mamicode.com
首页 > 其他好文 > 详细

5-28

时间:2018-05-28 19:22:44      阅读:174      评论:0      收藏:0      [点我收藏+]

标签:描述   也有   .com   blank   分析   符号   data   解析   com   

大O表示法:称一个函数g(n)是O(f(n)),当且仅当存在常数c>0和n0>=1,对一切n>n0均有|g(n)|<=c|f(n)|成立,也称函数g(n)以f(n)为界或者称g(n)受限于f(n)。记作g(n)=O(f(n))。 定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数。T(n)称为这一算法的“时间复杂度”。当输入量n逐渐加大时,时间复杂度的极限情形称为算法的“渐近时间复杂度”。

渐进分析法最常用的表示方法是用于描述函数渐近行为的数学符号,更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。大O符号是由德国数论学家保罗·巴赫曼(Paul Bachmann)在其1892年的著作《解析数论》(Analytische Zahlentheorie)首先引入的。
我们常用大O表示法表示时间复杂度,注意它是某一个算法的时间复杂度。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。此外,一个问题本身也有它的复杂度,如果某个算法的复杂度到达了这个问题复杂度的下界,那就称这样的算法是最佳算法。

5-28

标签:描述   也有   .com   blank   分析   符号   data   解析   com   

原文地址:https://www.cnblogs.com/coder-2017/p/9101756.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!