码迷,mamicode.com
首页 > 其他好文 > 详细

Hihocoder 1634 Puzzle Game(2017 ACM-ICPC 北京区域赛 H题,枚举 + 最大子矩阵变形)

时间:2018-05-29 00:33:13      阅读:285      评论:0      收藏:0      [点我收藏+]

标签:scanf   i+1   printf   return   ons   作用   个数   cpp   区域   

题目链接  2017 Beijing Problem H

题意  给定一个$n * m$的矩阵,现在可以把矩阵中的任意一个数换成$p$,求替换之后最大子矩阵的最小值。

 

首先想一想暴力的方法,枚举矩阵中的数,然后$O(n^{3})$求最大子矩阵更新答案,这样复杂度是$O(n^{5})$的。

思考得再仔细一些,就是包含这个数的最大子矩阵和,以及不包含这个数的最大子矩阵的和的较大值。

设原矩阵中最大子矩阵和为$mx$。

 

设$u_{i}$为只考虑矩阵前$i$行的最大子矩阵和,$d_{i}$为考虑矩阵第$i$行到第$n$行的最大子矩阵和,

$l_{i}$为只考虑矩阵前$i$列的最大子矩阵和,$r_{i}$为考虑矩阵第$i$列到第$m$列的最大子矩阵和。

 

那么枚举某个格子的时候不经过这个格子的最大子矩阵和为$max(u_{i-1}, d_{i+1}, l_{j-1}, r_{j+1})$

枚举的时候,当$a_{i,j} <= p$时,显然不起作用,跳过。

当$a_{i,j} > p$时,分类讨论:

(1)当$a_{i,j}$被原矩阵的最大子矩阵包含的时候,此时最大子矩阵和被更新为$mx - a_{i,j} + p$

(2)当$a_{i,j}$不被原矩阵的最大子矩阵包含的时候,

         此时$mx - a_{i,j} + p < mx = max(u_{i-1}, d_{i+1}, l_{j-1}, r_{j+1})$,对答案不产生影响,

所以直接枚举$a_{i,j}$,更新答案即可。

时间复杂度$O(n^{3})$

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b)	for (int i(a); i >= (b); --i)
#define MP		make_pair
#define fi		first
#define se		second


typedef long long LL;

const int N = 153;

int n, m, p;
int a[N][N], s[N][N], t[N][N];
int l[N], r[N], u[N], d[N], c[N];
int ans, now;


int main(){

	while (~scanf("%d%d%d", &n, &m, &p)){
		rep(i, 1, n){
			rep(j, 1, m) scanf("%d", a[i] + j);
		}

		memset(s, 0, sizeof s);

		rep(i, 1, n){
			s[i][0] = 0;
			rep(j, 1, m) s[i][j] = s[i][j - 1] + a[i][j];
		}

		memset(t, 0, sizeof t);
		

		rep(j, 1, m){
			t[j][0] = 0;
			rep(i, 1, n) t[j][i] = t[j][i - 1] + a[i][j];
		}

		rep(i, 0, max(n, m) + 3){
			u[i] = -2e9;
			d[i] = -2e9;
			l[i] = -2e9;
			r[i] = -2e9;
		}

		rep(i, 1, m){
			rep(j, i, m){
				memset(c, 0, sizeof c);
				rep(k, 1, n){
					c[k] = max(c[k - 1] + s[k][j] - s[k][i - 1], s[k][j] - s[k][i - 1]);
				}

				rep(k, 1, n) u[k] = max(u[k], c[k]);
			}
		}

		rep(i, 1, m){
			rep(j, i, m){
				memset(c, 0, sizeof c);
				dec(k, n, 1){
					c[k] = max(c[k + 1] + s[k][j] - s[k][i - 1], s[k][j] - s[k][i - 1]);
				}

				rep(k, 1, n) d[k] = max(d[k], c[k]);
			}
		}

		rep(i, 1, n){
			rep(j, i, n){
				memset(c, 0, sizeof c);
				rep(k, 1, m){
					c[k] = max(c[k - 1] + t[k][j] - t[k][i - 1], t[k][j] - t[k][i - 1]);
				}

				rep(k, 1, m) l[k] = max(l[k], c[k]);
			}
		}


		rep(i, 1, n){
			rep(j, i, n){
				memset(c, 0, sizeof c);
				dec(k, m, 1){
					c[k] = max(c[k + 1] + t[k][j] - t[k][i - 1], t[k][j] - t[k][i - 1]);
				}

				rep(k, 1, m) r[k] = max(r[k], c[k]);
			}
		}

		rep(i, 1, n){
			u[i] = max(u[i], u[i - 1]);
		}

		dec(i, n, 1){
			d[i] = max(d[i], d[i + 1]);
		}

		rep(i, 1, m){
			l[i] = max(l[i], l[i - 1]);
		}

		dec(i, m, 1){
			r[i] = max(r[i], r[i + 1]);
		}

		ans = 2e9;
		rep(i, 1, n){
			rep(j, 1, m){
				now = -2e9;
				now = max(now, l[j - 1]);
				now = max(now, r[j + 1]);
				now = max(now, u[i - 1]);
				now = max(now, d[i + 1]);
				now = max(now, u[n] - a[i][j] + p);
				ans = min(ans, now);
			}
		}

		ans = min(ans, u[n]);
		printf("%d\n", ans);
	}
	
	return 0;
}

 

Hihocoder 1634 Puzzle Game(2017 ACM-ICPC 北京区域赛 H题,枚举 + 最大子矩阵变形)

标签:scanf   i+1   printf   return   ons   作用   个数   cpp   区域   

原文地址:https://www.cnblogs.com/cxhscst2/p/9102699.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!