码迷,mamicode.com
首页 > 其他好文 > 详细

Structured Streaming教程(1) —— 基本概念与使用

时间:2018-06-02 17:10:16      阅读:757      评论:0      收藏:0      [点我收藏+]

标签:taf   处理   详细   大数据开发   模式   运行   format   主线程   atm   

近年来,大数据的计算引擎越来越受到关注,spark作为最受欢迎的大数据计算框架,也在不断的学习和完善中。在Spark2.x中,新开放了一个基于DataFrame的无下限的流式处理组件——Structured Streaming,它也是本系列的主角,废话不多说,进入正题吧!

简单介绍

在有过1.6的streaming和2.x的streaming开发体验之后,再来使用Structured Streaming会有一种完全不同的体验,尤其是在代码设计上。

在过去使用streaming时,我们很容易的理解为一次处理是当前batch的所有数据,只要针对这波数据进行各种处理即可。如果要做一些类似pv uv的统计,那就得借助有状态的state的DStream,或者借助一些分布式缓存系统,如Redis、Alluxio都能实现。需要关注的就是尽量快速的处理完当前的batch数据,以及7*24小时的运行即可。

可以看到想要去做一些类似Group by的操作,Streaming是非常不便的。Structured Streaming则完美的解决了这个问题。

技术分享图片

在Structured Streaming中,把源源不断到来的数据通过固定的模式“追加”或者“更新”到了上面无下限的DataFrame中。剩余的工作则跟普通的DataFrame一样,可以去map、filter,也可以去groupby().count()。甚至还可以把流处理的dataframe跟其他的“静态”DataFrame进行join。另外,还提供了基于window时间的流式处理。总之,Structured Streaming提供了快速、可扩展、高可用、高可靠的流式处理。

小栗子

在大数据开发中,Word Count就是基本的演示示例,所以这里也模仿官网的例子,做一下演示。

直接看一下完整的例子:

package xingoo.sstreaming

import org.apache.spark.sql.SparkSession

object WordCount {
  def main(args: Array[String]): Unit = {


    val spark = SparkSession
      .builder
      .master("local")
      .appName("StructuredNetworkWordCount")
      .getOrCreate()

    spark.sparkContext.setLogLevel("WARN")

    import spark.implicits._
    // 创建DataFrame
    // Create DataFrame representing the stream of input lines from connection to localhost:9999
    val lines = spark.readStream
      .format("socket")
      .option("host", "localhost")
      .option("port", 9999)
      .load()

    // Split the lines into words
    val words = lines.as[String].flatMap(_.split(" "))

    // Generate running word count
    val wordCounts = words.groupBy("value").count()

    // Start running the query that prints the running counts to the console
    // 三种模式:
    // 1 complete 所有内容都输出
    // 2 append   新增的行才输出
    // 3 update   更新的行才输出
    val query = wordCounts.writeStream
      .outputMode("complete")
      .format("console")
      .start()

    query.awaitTermination()
  }
}

效果就是在控制台输入nc -lk 9999,然后输入一大堆的字符,控制台就输出了对应的结果:
技术分享图片
然后来详细看一下代码:

val spark = SparkSession
      .builder
      .master("local")
      .appName("StructuredNetworkWordCount")
      .getOrCreate()

    spark.sparkContext.setLogLevel("WARN")

    import spark.implicits._

上面就不用太多解释了吧,创建一个本地的sparkSession,设置日志的级别为WARN,要不控制台太乱。然后引入spark sql必要的方法(如果没有import spark.implicits._,基本类型是无法直接转化成DataFrame的)。

val lines = spark.readStream
      .format("socket")
      .option("host", "localhost")
      .option("port", 9999)
      .load()

创建了一个Socket连接的DataStream,并通过load()方法获取当前批次的DataFrame。

val words = lines.as[String].flatMap(_.split(" "))
val wordCounts = words.groupBy("value").count()

先把DataFrame转成单列的DataSet,然后通过空格切分每一行,再根据value做groupby,并统计个数。

val query = wordCounts.writeStream
      .outputMode("complete")
      .format("console")
      .start()

调用DataFrame的writeStream方法,转换成输出流,设置模式为"complete",指定输出对象为控制台"console",然后调用start()方法启动计算。并返回queryStreaming,进行控制。

这里的outputmode和format都会后续详细介绍。

query.awaitTermination()

通过QueryStreaming的对象,调用awaitTermination阻塞主线程。程序就可以不断循环调用了。

观察一下Spark UI,可以发现程序稳定的在运行~
技术分享图片

总结

这就是一个最基本的wordcount的例子,想象一下,如果没有Structured Streaming,想要统计全局的wordcount,还是很费劲的(即便使用streaming的state,其实也不是那么好用的)。

Structured Streaming教程(1) —— 基本概念与使用

标签:taf   处理   详细   大数据开发   模式   运行   format   主线程   atm   

原文地址:https://www.cnblogs.com/xing901022/p/9125860.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!