标签:path cat 技术 otto ems mem AC etc leetcode
62. Unique Paths
A robot is located at the top-left corner of a m x n grid (marked ‘Start‘ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘ in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
题目要求到达终点的可能路径,在已知长宽的情况下,到达途中Finish,一共要走(m - 1) + ( n - 1) = m + n - 2,其中向右m - 1步,向下n - 1步,很典型的排列组合问题,即在m + n - 2步中选 m - 1个位置向右走,剩下的自然是向下走,得到公式:
N = C(m + n - 2, m - 1)
编码完成组合公式的计算:
public int uniquePaths(int m, int n) { return choose(m + n - 2, m > n ? n - 1 : m - 1); } public static int choose(int m, int n) { int member = 1; int temp = n; while (temp-- > 0) { member *= m--; } int denominator = 1; int start = 1; temp = n; while (temp-- > 0) { denominator *= start++; } return member / denominator; }
提交后发现,在case : m = 10 , n = 10时,未通过。想了半天确定解题思路没问题,于是一步步debug,终于发现乘法计算中,超出了int能表示的最大整数!
标签:path cat 技术 otto ems mem AC etc leetcode
原文地址:https://www.cnblogs.com/lyInfo/p/9126230.html