码迷,mamicode.com
首页 > 其他好文 > 详细

matplotlib 初步学习

时间:2018-06-02 21:29:01      阅读:653      评论:0      收藏:0      [点我收藏+]

标签:分享   类型   atp   黄色   class   mil   占用   dom   legend   


author:pprp

Matplotlib数据可视化

[TOC]

安装

  • conda install matplotlib
  • sudo apt-get install python-matplotlib

架构

  1. scripting
  2. Artist
  3. backend

Backend层

  • FigureCanvas对象实现绘图区域
  • Renderer在FigureCanvas上绘图
  • Event处理用户输入

Artist层

图中能看到的元素都是这个层的,比如标题,标签,刻度等

分为两种:

  1. primitive 原始
  2. composite 复合
graph TB
  Axes-->Figure
  Text-->Axes
  X-axis-->Axes
  Y-axis-->Axes
  Line2D-->Axes
  Y-ticks-->Y-axis
  Y-label-->Y-axis
  X-ticks-->X-axis
  X-label-->X-axis

Scripting层

pyplot, 数据分析和可视化

  • pylab & pyplot

  • from pylab import *
  • import matplotlib.pyplot as plt
  • import numpy as np

  • pylab 在一个命名空间整合了pyplot和numpy的功能,无需单独倒入numpy

建议使用pylab模块进行使用

pyplot模块

交互式用法与MATLAB相似

生成一个简单的交互式图表

import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.show()

设置图形的属性

  • plt.axis([fromx,tox,fromy,toy]) # 范围
  • plt.title(‘my first plot‘) # 设置标题
plt.plot([1,2,3,4],[1,4,9,16],'ro')
plt.show()

matplotlib and numpy

import math
import numpy as np
t=np.linspace(0,10,1000)
y1=map(math.sin,math.pi*t)
y2=map(math.sin,math.pi*t+math.pi/4)
y3=map(math.sin,math.pi*t-math.pi/4)
plt.plot(t,y1,'b*',t,y2,'g^',t,y3,'ys')

试了一下报错了

RuntimeError: matplotlib does not support generators as input

import math
import numpy as np
x=np.linspace(0,10,1000)
y1=np.sin(x)+1
y2=np.cos(x ** 2)+1
y3=np.cos(x)
plt.plot(t,y1,'b*',t,y2,'g^',t,y3,'ys')

从网上找的一个例子:

import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']#用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False#用来正常显示负号

x = np.linspace(0, 10, 1000)
y = np.sin(x) + 1
z = np.cos(x ** 2) + 1

plt.figure(figsize = (8, 4))
plt.plot(x,y,label='$\sin x+1$', color = 'red', linewidth = 2)
plt.plot(x,z,'b--',label='$\cos x^2+1$')
plt.xlabel('Time(s)')
plt.ylabel('Volt')
plt.title('A Sample Example')
plt.ylim(0,2.2)
plt.xlim(0,10)
plt.legend(loc='best')
颜色字符 说明 颜色字符 说明.1
0 ‘b‘ blue ‘m‘ magenta洋红色
1 ‘g‘ green ‘y‘ 黄色
2 ‘r‘ red ‘k‘ 黑色
0 ‘-‘ 实线
1 ‘--‘ 破折线
2 ‘-.‘ 点划线
3 ‘:‘ 虚线
标记字符 说明 标记字符 说明 标记字符 说明
‘.‘ 点标记 ‘1‘ 下花三角标记 ‘h‘ 竖六边形标记
‘,‘ 像素标记(极小点) ‘2‘ 上花三角标记 ‘H‘ 横六边形标记
‘o‘ 实心圏标记 ‘3‘ 左花三角标记 ‘+‘ 十字形标记
‘v‘ 倒三角标记 ‘4‘ 右花三角标记 ‘x‘ x标记
‘^‘ 上三角标记 ‘s‘ 实心方形标记 ‘D‘ 菱形标记
‘>‘ 右三角标记 ‘p‘ 实心五角标记 ‘d‘ 瘦菱形标记
‘<‘ 左三角标记 ‘*‘ 星形标记

pyplot并不默认支持中文显示,需要rcParams修改字体实现

matplotlib.rcParams[‘font.family‘]=‘SimHei‘

rcParams[‘font.family‘]

中文字体 说明
‘SimHei‘ 中文黑体
‘Kaiti‘ 中文楷体
‘LiSu‘ 中文隶书
‘FangSong‘ 中文仿宋
‘YouYuan‘ 中文幼圆
STSong 华文宋体

使用kwarg

关键字参数

plt.plot([1,2,3,3,2,6,0,2],linewidth=2.0)

处理多个Figure和Axes对象

t=np.arange(0,5,0.1)
y1=np.sin(2*np.pi*t)
y2=np.sin(2*np.pi*t)

plt.subplot(211)
plt.plot(t,y1,'b-.')
plt.subplot(212)
plt.plot(t,y2,'r--')

subplot(numRows, numCols, plotNum)

参考

import numpy as np
import matplotlib.pyplot as plt
# 分成2x2,占用第一个,即第一行第一列的子图
plt.subplot(221)
# 分成2x2,占用第二个,即第一行第二列的子图
plt.subplot(222)
# 分成2x1,占用第二个,即第二行
plt.subplot(212)

试一试:

import matplotlib.pyplot as plt
import numpy as np


# plt.plot([1, 2, 3, 4], [1, 4, 9, 16], 'ro')
# plt.axis([0, 6, 0, 20])
# plt.show()

# t = np.arange(0., 5., 0.2)
# plt.plot(t, t, 'r--', t, t ** 2, 'bs', t, t ** 3, 'g^')


def f(t):
    return np.exp(-t) * np.cos(2 * np.pi * t)


t1 = np.arange(0, 5, 0.1)
t2 = np.arange(0, 5, 0.02)

plt.figure(12)
plt.subplot(221)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'r--')

plt.subplot(222)
plt.plot(t2, np.cos(2 * np.pi * t2), 'r--')

plt.subplot(212)
plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

为图表添加更多元素

文本的添加

plt.title('title')
plt.xlabel('counting')
plt.ylabel('sqare values')
fontsize=20,fontname='Times New Roman'
color='gray'
# 还允许你在表格的任何位置添加文本
text(x,y,s,fontdict=None,**kwargs)

支持LaTeX表达式

将表达式内容放在两$符号之间,就可以用latex表达式了,通常要在表达式前加上r,表明它后面是原是文本,不能对其进行转义操作。

plt.text(1.1,12,r'$y=x^2$',fontsize=20,bbox={'facecolor':'yellow','alpha':0.2})

添加网格

plt.grid(True)

添加图例

plt.legend(['Fisrt Series'])
# 默认添加到右上角
# loc 关键字可以控制位置: 0 最佳位置,9 上方水平居中,8 下方水平居中

保存图标

%save my_first_chart 171
# 加载
%load my_first_chart.py
# 运行
%run my_first_chart.py

保存为图片

plt.savefig('mychart.png')

处理日期值

import datatime

datatime.data(2015,3,21)

在图表中可能有点问题,显示不全

再引入import matplotlib.dates,用MonthLocator()和DayLocator()函数分别表示月份和日子,然后用DateFormatter()函数

定义好两个时间尺度,一个用于日期,一个用于月份,可以调用set_major_locator()函数和set_minor_locator()函数,为x轴设置两个不同的标签;月份刻度标签的设置需要用到set_major_formatter()函数

import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

months=mdates.MonthLocator()
days=mdates.DayLocator()

timeFmt=mdates.DateFormatter('%Y-%m')
events=[datetime.date(2015,1,23),datetime.date(2015,1,28),datetime.date(2015,2,3),datetime.date(2015,2,21),datetime.date(2015,3,15),datetime.date(2015,3,24),datetime.date(2015,4,8),datetime.date(2015,4,24)]
readings=[12,22,25,20,18,15,18,14]
fig,ax=plt.subplots()
plt.plot(events,readings)
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(timeFmt)
ax.xaxis.set_minor_locator(days)

图表类型

线性图

import matplotlib.pyplot as plt
import numpy as np
x=np.arange(-2*np.pi,2*np.pi,0.01)
y=np.sin(3*x)/x
plt.plot(x,y)

刻度的自定义:

xticks(), yticks()
plt.xticks([-2*np.pi,-np*pi,0,np.pi,2*np.pi],[r'$-2\pi$',r'$-\pi$',0,'$\pi$','$2\pi$'])

技术分享图片

想要将坐标轴改变,需要用gca()函数

ax=plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))

annotate() 函数可以用来注释,添加箭头

直方图

hist() 函数
pop = np.random.randint(0,100,100)
n,bins,patches=plt.hist(pop,bins=20)

条状图

bar() 函数
index=np.arange(5)
values1=[5,7,3,4,6]
plt.bar(index,values1)
plt.xticks(index+0.4,['A','B','C','D','E'])

水平条状图

barh() 函数
index=np.arange(5)
values1=[5,7,3,4,6]
plt.barh(index,values1)
plt.xticks(index+0.4,['A','B','C','D','E'])

多序列条状图

index=np.arange(5)
v1=[5,7,3,4,6]
v2=[5,6,6,4,7]
v3=[5,6,5,4,6]
bw=0.3
plt.axis([0,5,0,8])
plt.bar(index,v1,bw,color='b')
plt.bar(index+bw,v2,bw,color='g')
plt.bar(index+2*bw,v3,bw,color='r')
plt.xticks(index+1.5*bw,['A','B','C','D','E'])

DataFrame的多序列条状图:

data是字典 ‘series1‘:[1,2,3,4]

df=pd.DataFrame(data)

df.plot(kind=‘bar‘)

饼图

pie()函数
labels=['Nokia','Samsung','Apple','Lumia']
values=[10,30,45,15]
colors=['yellow','red','blue','green']
plt.pie(values,labels=labels,colors=colors)
plt.axis('equal')

# 突出某一块     
explode=[0.3,0,0,0]
plt.pie(values,labels=labels,colors=colors,explode=explode,startangle=180)

等值线图

contour()函数

def f(x,y):
    return (1-y**5+x**5)*np.exp(-x**2-y**2)
dx=0.01
dy=0.01
x=np.arange(-2.0,2.0,dx)
y=np.arange(-2.0,2.0,dy)
X,Y=np.meshgrid(x,y)
C=plt.contour(X,Y,f(X,Y),8,colors='black')
plt.contourf(X,Y,f(X,Y),8,cmap=plt.cm.hot)
plt.clabel(C,inline=1,fontsize=10)
plt.colorbar()

mplot3D

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig=plt.figure()
ax=Axes3D(fig)
X=np.arange(-2,2,0.1)
Y=np.arange(-2,2,0.1)
X,Y=np.meshgrid(X,Y)
def f(x,y):
    return (1-y**5+x**5)*np.exp(-x**2-y**2)
ax.plot_surface(X,Y,f(X,Y),rstride=1,cstride=1)

3D散点图

scatter()函数

3D条状图

bar()函数

多面板图形

在一个图中显示另一个子图

fig=plt.figure()
ax=fig.add_axes([0.1,0.1,0.8,0.8])
inner_ax=fig.add_axes([0.6,0.6,0.25,0.25])

子图网格

GridSpec()函数
gs=plt.GridSpec(3,3)
fig=plt.figure(figsize=(6,6))
fig.add_subplot(gs[1,:2])
fig.add_subplot(gs[0,:2])
fig.add_subplot(gs[2,0])
fig.add_subplot(gs[:2,2])
fig.add_subplot(gs[2,1:])

matplotlib 初步学习

标签:分享   类型   atp   黄色   class   mil   占用   dom   legend   

原文地址:https://www.cnblogs.com/pprp/p/9126838.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!