码迷,mamicode.com
首页 > 其他好文 > 详细

单细胞RNA-seq比对定量用什么工具好?使用哪个版本的基因组?数据来说话

时间:2018-06-03 19:31:22      阅读:410      评论:0      收藏:0      [点我收藏+]

标签:偏差   ssi   nal   ota   sem   3.0   reveal   man   and   

这么多工具和基因组版本,选择困难症犯了,到底用哪个好呢?

2018 nature - Developmental diversification of cortical inhibitory interneurons : ENSEMBL release 84 Mus musculus genome

2017 Molecular Cell - Single-Cell Alternative Splicing Analysis with Expedition Reveals Splicing Dynamics during Neuron Differentiation : STAR, human genome (hg19), using GENCODE (v19) gene annotations; sailfish - GENCODE v19 protein-coding and long non-coding RNA annotation. Outrigger

2017 - Science - Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors : UCSC hg19 transcriptome; RSEM; TPM; 可行但是不完美,建议用count

2017 - Cell - Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns : cutadapt; hg19; 

2015 - Cell Stem Cell - Single-Cell Transcriptome Analysis Reveals Dynamic Changes in lncRNA Expression during Reprogramming : TopHat; mm9; Cufflinks; DESeq

2017 - Nature - : UCSC mm10 mouse transcriptome using Bowtie; RSEM

 

小结:

QC: cutadaptb不错哦

如果只想进行定量,那就用bowtie、bowtie2比对,再用RSEM定量,这CNS用得最多;但是,单细胞能用TPM吗?显然不行,因为表达基因的数量差异太大了,这会带来很严重的偏差。

如果想要Reads count,那还是用FeatureCounts吧。(网上貌似说FeatureCounts比HTseq算法更好一些,但是HTseq2015年发表以来,引用了3000多次了,真是纠结选哪个!!!)

参考:Compariosn Htseq And Feature Count

http://bioinformatics.cvr.ac.uk/blog/featurecounts-or-htseq-count/

http://genomespot.blogspot.hk/2014/09/read-counting-with-featurecounts.html

 

如果想鉴定可变剪切,那就必须Tophat、Hisat2和STAR中选了,Hisat2引用少得可怜;为什么大家都不用呢?STAR的引用秒杀它,Tophat就太老了,不用也罢。

 

 

单细胞RNA-seq比对定量用什么工具好?使用哪个版本的基因组?数据来说话

标签:偏差   ssi   nal   ota   sem   3.0   reveal   man   and   

原文地址:https://www.cnblogs.com/leezx/p/8653005.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!