码迷,mamicode.com
首页 > 其他好文 > 详细

指数衰减学习率

时间:2018-06-04 22:34:45      阅读:271      评论:0      收藏:0      [点我收藏+]

标签:学习   class   initial   ESS   const   bsp   样本   会话   最小   

 

技术分享图片

#coding:utf-8
#设损失函数 loss=(w+1)^2,令w初值是常数10.反向传播就是求最优w,即求最小loss对应的w值
#使用指数衰减学习率,在迭代初期得到较高的下降速度,可以在较小的训练轮数下取得更有效收敛度

import tensorflow as tf

LEARNING_RATE_BASE = 0.1 #最初学习率
LEARNING_RATE_DECAY = 0.99 #学习率衰减率
LEARNING_RATE_STEP = 1 #喂入多少轮BATCH_SIZE后,更新一次学习率,一般设为:总样本数/BATCH_SIZE

#运行了几轮BATCH_SIZE的计数器,初值给0,设为不被训练
global_step = tf.Variable(0, trainable=False)
#定义指数下降学习率
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,LEARNING_RATE_STEP, LEARNING_RATE_DECAY, staircase=True)
#定义待优化参数,初值给10S
w = tf.Variable(tf.constant(5,dtype=tf.float32))
#定义损失函数loss
loss = tf.square(w+1)
train_step = tf.train.GradientDescentOptimizer(learing_rate).minimize(loss, global_step=global_step)
#生成会话,训练40轮
with tf.Session() as sess:
    init_op = tf.global_variables_initializer()
    sess.run(init_op)
    for i in range(40):
        sess.run(train_step)
        learing_rate_val = sess.run(learning_rate)
        global_step_val = sess.run(global_step)
        w_val = sess.run(w)
        loss_val = sess.run(loss)
        print "After %s steps: global_step is %f, w is %f, learning_rate is %f, loss is %f." % (i,global_step_val,w_val,learing_rate_val,loss_val) 

 技术分享图片

 

指数衰减学习率

标签:学习   class   initial   ESS   const   bsp   样本   会话   最小   

原文地址:https://www.cnblogs.com/144823836yj/p/9135759.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!