标签:启动 scribe 集群 produce 否则 作用 ssi 方案 ocs
Structured Streaming最主要的生产环境应用场景就是配合kafka做实时处理,不过在Strucured Streaming中kafka的版本要求相对搞一些,只支持0.10及以上的版本。就在前一个月,我们才从0.9升级到0.10,终于可以尝试structured streaming的很多用法,很开心~
如果是maven工程,直接添加对应的kafka的jar包即可:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_2.11</artifactId>
<version>2.2.0</version>
</dependency>
读取的时候,可以读取某个topic,也可以读取多个topic,还可以指定topic的通配符形式:
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1,topic2")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribePattern", "topic.*")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
关于Kafka的offset,structured streaming默认提供了几种方式:
val df = spark
.read
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1,topic2")
.option("startingOffsets", """{"topic1":{"0":23,"1":-2},"topic2":{"0":-2}}""")
.option("endingOffsets", """{"topic1":{"0":50,"1":-1},"topic2":{"0":-1}}""")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
val df = spark
.read
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribePattern", "topic.*")
.option("startingOffsets", "earliest")
.option("endingOffsets", "latest")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
读取后的数据的Schema是固定的,包含的列如下:
Column | Type | 说明 |
---|---|---|
key | binary | 信息的key |
value | binary | 信息的value(我们自己的数据) |
topic | string | 主题 |
partition | int | 分区 |
offset | long | 偏移值 |
timestamp | long | 时间戳 |
timestampType | int | 类型 |
无论是流的形式,还是批的形式,都需要一些必要的参数:
其他比较重要的参数有:
Apache kafka仅支持“至少一次”的语义,因此,无论是流处理还是批处理,数据都有可能重复。比如,当出现失败的时候,structured streaming会尝试重试,但是不会确定broker那端是否已经处理以及持久化该数据。但是如果query成功,那么可以断定的是,数据至少写入了一次。比较常见的做法是,在后续处理kafka数据时,再进行额外的去重,关于这点,其实structured streaming有专门的解决方案。
保存数据时的schema:
下面是sink输出必须要有的参数:
// 基于配置指定topic
val ds = df
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.start()
// 在字段中包含topic
val ds = df
.selectExpr("topic", "CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.start()
跟流处理其实一样
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.write
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.save()
df.selectExpr("topic", "CAST(key AS STRING)", "CAST(value AS STRING)")
.write
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.save()
针对Kafka的特殊处理,可以通过DataStreamReader.option进行设置。
关于(详细的kafka配置可以参考consumer的官方文档](http://kafka.apache.org/documentation.html#newconsumerconfigs)
注意下面的参数是不能被设置的,否则kafka会抛出异常:
Structured Streaming教程(3) —— 与Kafka的集成
标签:启动 scribe 集群 produce 否则 作用 ssi 方案 ocs
原文地址:https://www.cnblogs.com/xing901022/p/9141334.html