标签:rbo member keras red loss += pes set inpu
代码:
# -*- coding: utf-8 -*- import random import gym import numpy as np from collections import deque from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam from keras.utils.vis_utils import plot_model EPISODES = 1000 class DQNAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.memory = deque(maxlen=2000) self.gamma = 0.95 # discount rate #self.epsilon = 1.0 # exploration rate self.epsilon = 0.4 # exploration rate self.epsilon_min = 0.01 self.epsilon_decay = 0.995 self.learning_rate = 0.001 self.model = self._build_model() #可视化MLP结构 plot_model(self.model, to_file=‘dqn-cartpole-v0-mlp.png‘, show_shapes=False) def _build_model(self): # Neural Net for Deep-Q learning Model model = Sequential() model.add(Dense(24, input_dim=self.state_size, activation=‘relu‘)) model.add(Dense(24, activation=‘relu‘)) model.add(Dense(self.action_size, activation=‘linear‘)) model.compile(loss=‘mse‘, optimizer=Adam(lr=self.learning_rate)) return model def remember(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def act(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) act_values = self.model.predict(state) #print("act_values:") #print(act_values) return np.argmax(act_values[0]) # returns action def replay(self, batch_size): minibatch = random.sample(self.memory, batch_size) for state, action, reward, next_state, done in minibatch: target = reward if not done: target = (reward + self.gamma * np.amax(self.model.predict(next_state)[0])) target_f = self.model.predict(state) target_f[0][action] = target self.model.fit(state, target_f, epochs=1, verbose=0) #if self.epsilon > self.epsilon_min: # self.epsilon *= self.epsilon_decay def load(self, name): self.model.load_weights(name) def save(self, name): self.model.save_weights(name) if __name__ == "__main__": env = gym.make(‘CartPole-v0‘) state_size = env.observation_space.shape[0] action_size = env.action_space.n #print(state_size) #print(action_size) agent = DQNAgent(state_size, action_size) done = False batch_size = 32 avg=0 for e in range(EPISODES): state = env.reset() state = np.reshape(state, [1, state_size]) for time in range(500): env.render() action = agent.act(state) next_state, reward, done, _ = env.step(action) reward = reward if not done else -10 next_state = np.reshape(next_state, [1, state_size]) agent.remember(state, action, reward, next_state, done) state = next_state if done: print("episode: {}/{}, score: {}, e: {:.2}" .format(e, EPISODES, time, agent.epsilon)) avg+=time break if len(agent.memory) > batch_size: agent.replay(batch_size) print("Avg score:{}".format(avg/1000))
基本思路:
让他自己训练玩这个游戏(每次应该左右移动的距离),基本思路就是:
本质上就是使用MLP训练(动作,得分)
这个得分是坚持时间的长短,如果时间长得分就高。
但是我感觉这个gym自己做了很多事情,比如度量奖励分数,action描述等。待进一步挖掘!
DQN 处理 CartPole 问题——使用强化学习,本质上是训练MLP,预测每一个动作的得分
标签:rbo member keras red loss += pes set inpu
原文地址:https://www.cnblogs.com/bonelee/p/9146540.html