标签:深度优先搜索 整数 基础上 cup push .com 集合 blog 必须
Medium!
题目描述:
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例:
输入: nums = [1,2,3] 输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
解题思路:
这道求子集合的问题,由于其要列出所有结果,按照以往的经验,肯定是要用递归来做。这道题其实它的非递归解法相对来说更简单一点,下面我们先来看非递归的解法,由于题目要求子集合中数字的顺序是非降序排列的,所有我们需要预处理,先给输入数组排序,然后再进一步处理,最开始是想按照子集的长度由少到多全部写出来,比如子集长度为0的就是空集,空集是任何集合的子集,满足条件,直接加入。下面长度为1的子集,直接一个循环加入所有数字,子集长度为2的话可以用两个循环,但是这种想法到后面就行不通了,因为循环的个数不能无限的增长,所以我们必须换一种思路。
我们可以一位一位的往上叠加,比如对于题目中给的例子[1,2,3]来说,最开始是空集,那么我们现在要处理1,就在空集上加1,为[1],现在我们有两个自己[]和[1],下面我们来处理2,我们在之前的子集基础上,每个都加个2,可以分别得到[2],[1, 2],那么现在所有的子集合为[], [1], [2], [1, 2],同理处理3的情况可得[3], [1, 3], [2, 3], [1, 2, 3], 再加上之前的子集就是所有的子集合了。
C++解法一:
1 // Non-recursion 2 class Solution { 3 public: 4 vector<vector<int> > subsets(vector<int> &S) { 5 vector<vector<int> > res(1); 6 sort(S.begin(), S.end()); 7 for (int i = 0; i < S.size(); ++i) { 8 int size = res.size(); 9 for (int j = 0; j < size; ++j) { 10 res.push_back(res[j]); 11 res.back().push_back(S[i]); 12 } 13 } 14 return res; 15 } 16 };
整个添加的顺序为:
[]
[1]
[2]
[1 2]
[3]
[1 3]
[2 3]
[1 2 3]
下面来看递归的解法,相当于一种深度优先搜索,参见http://www.cnblogs.com/TenosDoIt/p/3451902.html,由于原集合每一个数字只有两种状态,要么存在,要么不存在,那么在构造子集时就有选择和不选择两种情况,所以可以构造一棵二叉树,左子树表示选择该层处理的节点,右子树表示不选择,最终的叶节点就是所有子集合,树的结构如下:
[] / \ / \ / [1] [] / \ / / \ / \ [1 2] [1] [2] [] / \ / \ / \ / [1 2 3] [1 2] [1 3] [1] [2 3] [2] [3] []
C++解法二:
1 // Recursion 2 class Solution { 3 public: 4 vector<vector<int> > subsets(vector<int> &S) { 5 vector<vector<int> > res; 6 vector<int> out; 7 sort(S.begin(), S.end()); 8 getSubsets(S, 0, out, res); 9 return res; 10 } 11 void getSubsets(vector<int> &S, int pos, vector<int> &out, vector<vector<int> > &res) { 12 res.push_back(out); 13 for (int i = pos; i < S.size(); ++i) { 14 out.push_back(S[i]); 15 getSubsets(S, i + 1, out, res); 16 out.pop_back(); 17 } 18 } 19 };
整个添加的顺序为:
[]
[1]
[1 2]
[1 2 3]
[1 3]
[2]
[2 3]
[3]
最后我们再来看一种解法,这种解法是CareerCup书上给的一种解法,想法也比较巧妙,把数组中所有的数分配一个状态,true表示这个数在子集中出现,false表示在子集中不出现,那么对于一个长度为n的数组,每个数字都有出现与不出现两种情况,所以共有2n中情况,那么我们把每种情况都转换出来就是子集了,我们还是用题目中的例子, [1 2 3]这个数组共有8个子集,每个子集的序号的二进制表示,把是1的位对应原数组中的数字取出来就是一个子集,八种情况都取出来就是所有的子集了。
C++解法三:
1 class Solution { 2 public: 3 vector<vector<int> > subsets(vector<int> &S) { 4 vector<vector<int> > res; 5 sort(S.begin(), S.end()); 6 int max = 1 << S.size(); 7 for (int k = 0; k < max; ++k) { 8 vector<int> out = convertIntToSet(S, k); 9 res.push_back(out); 10 } 11 return res; 12 } 13 vector<int> convertIntToSet(vector<int> &S, int k) { 14 vector<int> sub; 15 int idx = 0; 16 for (int i = k; i > 0; i >>= 1) { 17 if ((i & 1) == 1) { 18 sub.push_back(S[idx]); 19 } 20 ++idx; 21 } 22 return sub; 23 } 24 };
标签:深度优先搜索 整数 基础上 cup push .com 集合 blog 必须
原文地址:https://www.cnblogs.com/ariel-dreamland/p/9154503.html