标签:inter lag for 题解 false size ++ clu names
差分约束
令\(a[i]\)表示是否选择\(i\),\(s[i]\)表示\(a[i]\)的前缀和
对\(s[i] \quad i \in [-1,50000]\)分别建立一个点
首先有
\[s[i] - s[i - 1] \ge 0\]
\[s[i] - s[i - 1] \le 1\]
然后就是限制条件
\[s[b] - s[a - 1] \ge c\]
然后就没了
用\(spfa\)跑最长路
由于题目保证有解,所以不会存在正环
复杂度上界是\(O(nm)\)的,但由于保证有解,而且\(spfa\)的玄学复杂度,并不会\(T\)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,-0x3f3f3f3f,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 50005,maxm = 200005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == ‘-‘) flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne,N = 50001;
struct EDGE{int to,nxt,w;}ed[maxm];
inline void build(int u,int v,int w){
ed[++ne] = (EDGE){v,h[u],w}; h[u] = ne;
}
queue<int> q;
int d[maxn],vis[maxn];
void spfa(){
for (int i = 0; i <= N; i++) d[i] = -INF; d[N] = 0;
q.push(N);
int u;
while (!q.empty()){
u = q.front(); q.pop();
vis[u] = false;
Redge(u) if (d[to = ed[k].to] < d[u] + ed[k].w){
d[to] = d[u] + ed[k].w;
if (!vis[to]) q.push(to),vis[to] = true;
}
}
}
int main(){
int m = read(),a,b,c;
while (m--){
a = read(); b = read(); c = read();
a--; if (a == -1) a = N;
build(a,b,c);
}
build(N,0,0); build(0,N,-1);
for (int i = 1; i < N; i++)
build(i - 1,i,0),build(i,i - 1,-1);
spfa();
/*for (int i = 0; i < 15; i++)
printf("d[%d] = %d\n",i,d[i]);*/
printf("%d\n",d[N - 1]);
return 0;
}
标签:inter lag for 题解 false size ++ clu names
原文地址:https://www.cnblogs.com/Mychael/p/9160278.html