标签:stream describe names pac ted AMM lap task AC
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 35485 Accepted Submission(s): 12639
状态dp[i][j]有前j个数,组成i组的和的最大值。决策:
第j个数,是在第包含在第i组里面,还是自己独立成组。
方程 dp[i][j]=Max(dp[i][j-1]+a[j] , max( dp[i-1][k] ) + a[j] ) 0<k<j
空间复杂度,m未知,n<=1000000, 继续滚动数组。
时间复杂度 n^3. n<=1000000. 显然会超时,继续优化。
max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。
我们可以在每次计算dp[i][j]的时候记录下前j个的最大值
用数组保存下来 下次计算的时候可以用,这样时间复杂度为 n^2.
#include <cstdio> #include <algorithm> #include <iostream> #include <cstring> using namespace std; const int maxn = 1e6+10; const int INF = 0x7fffffff; int dp[maxn]; int a[maxn]; int mmax[maxn]; int main(){ int n,m; int maxx; while(scanf("%d%d",&m,&n) !=EOF){ for(int i=1;i<=n;i++){ scanf("%d",&a[i]); mmax[i]=0; dp[i]=0; } dp[0]=0; mmax[0]=0; for(int i=1;i<=m;i++){ maxx=-1*INF; for(int j=i;j<=n;j++){ dp[j]=max(dp[j-1]+a[j],mmax[j-1]+a[j]); mmax[j-1]=maxx; maxx=max(maxx,dp[j]); } } printf("%d\n", maxx); } return 0; }
标签:stream describe names pac ted AMM lap task AC
原文地址:https://www.cnblogs.com/buerdepepeqi/p/9153161.html