标签:rip range line ice math 均方误差 tensor ini mes
初始化一组数据 \((x,y)\),使其满足这样的线性关系 \(y = w x + b\) 。然后基于反向传播法,用均方误差(mean squared error)去拟合这组数据。
self.prediction = torch.nn.Linear(1, 1)
这一行代码,实际是维护了两个变量,其描述了这样的一种关系:
\[prediction_{1\times1} = weight_{1\times1} \times input_{1\times1} + bias_{1\times1}\]
其中,每个参数都是 \(1\times1\) 维的。
import torch
epoch = 10000
lr = 0.01
w = 10
b = 5
x = torch.unsqueeze(torch.linspace(1, 10, 20), 1)
y = w*x + b + torch.rand(x.size())
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.prediction = torch.nn.Linear(1, 1)
def forward(self, x):
out = self.prediction(x)
return out
net = Net()
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
criticism = torch.nn.MSELoss()
for i in range(epoch):
y_pred = net(x)
loss = criticism(y_pred, y) # 先是 y_pred 然后是 y_true 参数顺序不能乱
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(loss.data)
print(net.state_dict()[‘prediction.weight‘])
print(net.state_dict()[‘prediction.bias‘])
输出:
tensor(1.00000e-07 *
5.3597)
tensor([[ 1.2002]])
tensor([ 0.9984])
Linear Regression with PyTorch
标签:rip range line ice math 均方误差 tensor ini mes
原文地址:https://www.cnblogs.com/fengyubo/p/9164970.html