码迷,mamicode.com
首页 > 其他好文 > 详细

phd文献阅读日志-博一下学期

时间:2018-06-11 20:28:48      阅读:610      评论:0      收藏:0      [点我收藏+]

标签:enc   hang   mac   vol   科技   nat   multi   科学   lam   

博一下学期:
1.week1,2018.2.26
2006-Extreme learning machine: theory and applications
期刊来源:Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
2.week2,2018.3.5
2017-3d-prnn: Generating shape primitives with recurrent neural networks
University of Illinois at Urbana-Champaign, Adobe Research(美国伊利诺伊大学厄巴纳 - 香槟分校,Adobe研究院)
期刊来源:Zou C, Yumer E, Yang J, et al. 3d-prnn: Generating shape primitives with recurrent neural networks[C]//The IEEE International Conference on Computer Vision (ICCV). 2017.
3.week3,2018.3.12;week7,2018.4.9;week8,2018.4.16;week9,2018.4.23
2017-3D object reconstruction from a single depth view with adversarial learning
University of Oxford,University of Warwick,Heriot-Watt University(英国牛津大学,华威大学,赫瑞瓦特大学)
期刊来源:Yang B, Wen H, Wang S, et al. 3D object reconstruction from a single depth view with adversarial learning[J]. ICCV, 2017.
2018-3D Object Dense Reconstruction from a Single Depth View
期刊来源:Yang B, Rosa S, Markham A, et al. 3D Object Dense Reconstruction from a Single Depth View[J]. arXiv preprint arXiv:1802.00411, 2018.
Improved training of wasserstein gans
Montreal Institute for Learning Algorithms,Courant Institute of Mathematical Sciences,CIFAR Fellow(美国科技巨头蒙特利尔学习算法研究所,库特数学科学研究所,CIFAR研究员)
Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein gans[C]//Advances in Neural Information Processing Systems. 2017: 5769-5779.
Generative adversarial nets
期刊来源:Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in neural information processing systems. 2014: 2672-2680.
4.week4,2018.3.19
2017-Hierarchical surface prediction for 3d object reconstruction
University of California, Berkeley(美国加州大学伯克利分校)
期刊来源:H?ne C, Tulsiani S, Malik J. Hierarchical surface prediction for 3d object reconstruction[J]. arXiv preprint arXiv:1704.00710, 2017.
2017-Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs
University of California, Berkeley(美国加州大学伯克利分校)
期刊来源:Tatarchenko M, Dosovitskiy A, Brox T. Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs[J]. CoRR, abs/1703.09438, 2017.
5.week5,2018.3.26
2017-3D shape reconstruction from sketches via multi-view convolutional networks
University of Massachusetts - Amherst(美国麻省大学阿默斯特分校)
期刊来源:Lun Z, Gadelha M, Kalogerakis E, et al. 3D shape reconstruction from sketches via multi-view convolutional networks[J]. arXiv preprint arXiv:1707.06375, 2017.
2016-3d shape induction from 2d views of multiple objects
University of Massachusetts - Amherst(美国麻省大学阿默斯特分校)
期刊来源:Gadelha M, Maji S, Wang R. 3d shape induction from 2d views of multiple objects[J]. arXiv preprint arXiv:1612.05872, 2016.
2017-Multi-view 3D face reconstruction with deep recurrent neural networks
Computational Biomedicine Lab,University of Houston(美国休斯顿大学,计算生物医学实验室)
期刊来源:Dou P, Kakadiaris I A. Multi-view 3D face reconstruction with deep recurrent neural networks[C]//Biometrics (IJCB), 2017 IEEE International Joint Conference on. IEEE, 2017: 483-492.
2017-End-to-end 3D face reconstruction with deep neural networks
Computational Biomedicine Lab,University of Houston(美国休斯顿大学,计算生物医学实验室)
期刊来源:Dou P, Shah S K, Kakadiaris I A. End-to-end 3D face reconstruction with deep neural networks[C]//Proc. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii. 2017, 5.
6.week6,2018.4.2
2017-Weakly supervised generative adversarial networks for 3d reconstruction
Stanford University(美国斯坦福大学)
期刊来源:Gwak J Y, Choy C B, Garg A, et al. Weakly supervised generative adversarial networks for 3d reconstruction[J]. arXiv preprint arXiv:1705.10904, 2017.
2016-Unsupervised learning of 3d structure from images
NYU Multimedia and Visual Computing Lab(纽约大学,多媒体和视觉计算实验室)
Courant Institute of Mathematical Science(库兰特学院,数学科学研究所)
NYU Tandon School of Engineering, USA(纽约大学工学院)
期刊来源:Rezende D J, Eslami S M A, Mohamed S, et al. Unsupervised learning of 3d structure from images[C]//Advances In Neural Information Processing Systems. 2016: 4996-5004.
2017-Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning
Google DeepMind
期刊来源:Wang L, Fang Y. Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning[J]. arXiv preprint arXiv:1711.09312, 2017.
2017-Began: Boundary equilibrium generative adversarial networks
Google
期刊来源:Berthelot D, Schumm T, Metz L. Began: Boundary equilibrium generative adversarial networks[J]. arXiv preprint arXiv:1703.10717, 2017.
7.week9,2018.4.23
2016-Learning a predictable and generative vector representation for objects
Robotics Institute, Carnegie Mellon University, MITRE Corporation(卡内基梅隆大学,机器人研究所,MITRE公司)
期刊来源:Girdhar R, Fouhey D F, Rodriguez M, et al. Learning a predictable and generative vector representation for objects[C]//European Conference on Computer Vision. Springer, Cham, 2016: 484-499.
2017-Marrnet: 3d shape reconstruction via 2.5 d sketches
MIT CSAIL,ShanghaiTech University,Shanghai Jiao Tong University(麻省理工学院 计算机科学与人工智能实验室,上海科技大学,上海交通大学)
期刊来源:Wu J, Wang Y, Xue T, et al. Marrnet: 3d shape reconstruction via 2.5 d sketches[C]//Advances In Neural Information Processing Systems. 2017: 540-550.
2016-An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning
National University of DefenseTechnology(国防科技大学)
期刊来源:Wang Y, Xie Z, Xu K, et al. An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning[J]. Neurocomputing, 2016, 174: 988-998.
2018-On the convergence of adam and beyond
Google New York
期刊来源:Reddi S J, Kale S, Kumar S. On the convergence of adam and beyond[C]//International Conference on Learning Representations. 2018.
8.week13,2018.5.21
2018-Spherical CNNs
University of Amsterdam(荷兰阿姆斯特丹大学)
期刊来源:Cohen T S, Geiger M, Koehler J, et al. Spherical CNNs[J]. ICLR, 2018.
2016-Group equivariant convolutional networks
University of Amsterdam(荷兰阿姆斯特丹大学)
期刊来源:Cohen T, Welling M. Group equivariant convolutional networks[C]//International Conference on Machine Learning. 2016: 2990-2999.
2017-Learning SO(3) Equivariant Representations with Spherical CNNs
University of Pennsylvania,Google(美国宾夕法尼亚大学)
期刊来源:Esteves C, Allen-Blanchette C, Makadia A, et al. Learning SO(3) Equivariant Representations with Spherical CNNs[J]. 2017.
2018-HexaConv
University of Amsterdam(荷兰阿姆斯特丹大学)
期刊来源:Hoogeboom E, Peters J W T, Cohen T S, et al. HexaConv[J]. arXiv preprint arXiv:1803.02108, 2018.
9.week15,2018.6.4
2016-View synthesis by appearance flow
University of California, Berkeley(美国加州大学伯克利分校)
期刊来源:Zhou T, Tulsiani S, Sun W, et al. View synthesis by appearance flow[C]//European conference on computer vision. Springer, Cham, 2016: 286-301.

phd文献阅读日志-博一下学期

标签:enc   hang   mac   vol   科技   nat   multi   科学   lam   

原文地址:https://www.cnblogs.com/chamie/p/9168863.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!