标签:alt 部分 line rip rom 字符 不包含 hdf bae
原文出处: pandas.pydata.org 译文出处:石卓林
这是关于pandas的简短介绍,主要面向新用户。可以参阅Cookbook了解更复杂的使用方法。
链接:http://python.jobbole.com/84416/
习惯上,我们做以下导入
1
2
3
|
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt
|
使用传递的值列表序列创建序列, 让pandas创建默认整数索引
1
2
3
4
5
6
7
8
9
10
|
In [4]: s = pd.Series([1,3,5,np.nan,6,8])
In [5]: s
Out[5]:
0 1
1 3
2 5
3 NaN
4 6
5 8
dtype: float64
|
使用传递的numpy数组创建数据帧,并使用日期索引和标记列.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
In [6]: dates = pd.date_range(‘20130101‘,periods=6)
In [7]: dates
Out[7]:
<class ‘pandas.tseries.index.DatetimeIndex‘>
[2013-01-01, ..., 2013-01-06]
Length: 6, Freq: D, Timezone: None
In [8]: df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list(‘ABCD‘))
In [9]: df
Out[9]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
|
使用传递的可转换序列的字典对象创建数据帧.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
In [10]: df2 = pd.DataFrame({ ‘A‘ : 1.,
....: ‘B‘ : pd.Timestamp(‘20130102‘),
....: ‘C‘ : pd.Series(1,index=list(range(4)),dtype=‘float32‘),
....: ‘D‘ : np.array([3] * 4,dtype=‘int32‘),
....: ‘E‘ : pd.Categorical(["test","train","test","train"]),
....: ‘F‘ : ‘foo‘ })
....:
In [11]: df2
Out[11]:
A B C D E F
0 1 2013-01-02 1 3 test foo
1 1 2013-01-02 1 3 train foo
2 1 2013-01-02 1 3 test foo
3 1 2013-01-02 1 3 train foo
|
所有明确类型
1
2
3
4
5
6
7
8
9
|
In [12]: df2.dtypes
Out[12]:
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
|
如果你这个正在使用IPython,标签补全列名(以及公共属性)将自动启用。这里是将要完成的属性的子集:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
In [13]: df2.<TAB>
df2.A df2.boxplot
df2.abs df2.C
df2.add df2.clip
df2.add_prefix df2.clip_lower
df2.add_suffix df2.clip_upper
df2.align df2.columns
df2.all df2.combine
df2.any df2.combineAdd
df2.append df2.combine_first
df2.apply df2.combineMult
df2.applymap df2.compound
df2.as_blocks df2.consolidate
df2.asfreq df2.convert_objects
df2.as_matrix df2.copy
df2.astype df2.corr
df2.at df2.corrwith
df2.at_time df2.count
df2.axes df2.cov
df2.B df2.cummax
df2.between_time df2.cummin
df2.bfill df2.cumprod
df2.blocks df2.cumsum
df2.bool df2.D
|
如你所见, 列 A, B, C, 和 D 也是自动完成标签. E 也是可用的; 为了简便起见,后面的属性显示被截断.
参阅基础部分
查看帧顶部和底部行
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
In [14]: df.head()
Out[14]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
In [15]: df.tail(3)
Out[15]:
A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
|
显示索引,列,和底层numpy数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
In [16]: df.index
Out[16]:
<class ‘pandas.tseries.index.DatetimeIndex‘>
[2013-01-01, ..., 2013-01-06]
Length: 6, Freq: D, Timezone: None
In [17]: df.columns
Out[17]: Index([u‘A‘, u‘B‘, u‘C‘, u‘D‘], dtype=‘object‘)
In [18]: df.values
Out[18]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
[ 1.2121, -0.1732, 0.1192, -1.0442],
[-0.8618, -2.1046, -0.4949, 1.0718],
[ 0.7216, -0.7068, -1.0396, 0.2719],
[-0.425 , 0.567 , 0.2762, -1.0874],
[-0.6737, 0.1136, -1.4784, 0.525 ]])
|
描述显示数据快速统计摘要
1
2
3
4
5
6
7
8
9
10
11
|
In [19]: df.describe()
Out[19]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804
|
转置数据
1
2
3
4
5
6
7
|
In [20]: df.T
Out[20]:
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
|
按轴排序
1
2
3
4
5
6
7
8
9
|
In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:
D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690
|
按值排序
1
2
3
4
5
6
7
8
9
|
In [22]: df.sort(columns=‘B‘)
Out[22]:
A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
|
注释: 标准Python / Numpy表达式可以完成这些互动工作, 但在生产代码中, 我们推荐使用优化的pandas数据访问方法, .at, .iat, .loc, .iloc 和 .ix.
选择单列, 这会产生一个序列, 等价df.A
1
2
3
4
5
6
7
8
9
|
In [23]: df[‘A‘]
Out[23]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64
|
使用[]选择行片断
1
2
3
4
5
6
7
8
9
10
11
12
13
|
In [24]: df[0:3]
Out[24]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
In [25]: df[‘20130102‘:‘20130104‘]
Out[25]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
|
更多信息请参阅按标签选择
使用标签获取横截面
1
2
3
4
5
6
7
|
In [26]: df.loc[dates[0]]
Out[26]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64
|
使用标签选择多轴
1
2
3
4
5
6
7
8
9
|
In [27]: df.loc[:,[‘A‘,‘B‘]]
Out[27]:
A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648
|
显示标签切片, 包含两个端点
1
2
3
4
5
6
|
In [28]: df.loc[‘20130102‘:‘20130104‘,[‘A‘,‘B‘]]
Out[28]:
A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
|
降低返回对象维度
1
2
3
4
5
|
In [29]: df.loc[‘20130102‘,[‘A‘,‘B‘]]
Out[29]:
A 1.212112
B -0.173215
Name: 2013-01-02 00:00:00, dtype: float64
|
获取标量值
1
2
|
In [30]: df.loc[dates[0],‘A‘]
Out[30]: 0.46911229990718628
|
快速访问并获取标量数据 (等价上面的方法)
1
2
|
In [31]: df.at[dates[0],‘A‘]
Out[31]: 0.46911229990718628
|
更多信息请参阅按位置参阅
传递整数选择位置
1
2
3
4
5
6
7
|
In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64
|
使用整数片断,效果类似numpy/python
1
2
3
4
5
|
In [33]: df.iloc[3:5,0:2]
Out[33]:
A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
|
使用整数偏移定位列表,效果类似 numpy/python 样式
1
2
3
4
5
6
|
In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]:
A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232
|
显式行切片
1
2
3
4
5
|
In [35]: df.iloc[1:3,:]
Out[35]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
|
显式列切片
1
2
3
4
5
6
7
8
9
|
In [36]: df.iloc[:,1:3]
Out[36]:
B C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215 0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05 0.567020 0.276232
2013-01-06 0.113648 -1.478427
|
显式获取一个值
1
2
|
In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330861
|
快速访问一个标量(等同上个方法)
1
2
|
In [38]: df.iat[1,1]
Out[38]: -0.17321464905330861
|
使用单个列的值选择数据.
1
2
3
4
5
6
|
In [39]: df[df.A > 0]
Out[39]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
|
where 操作.
1
2
3
4
5
6
7
8
9
|
In [40]: df[df > 0]
Out[40]:
A B C D
2013-01-01 0.469112 NaN NaN NaN
2013-01-02 1.212112 NaN 0.119209 NaN
2013-01-03 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860
2013-01-05 NaN 0.567020 0.276232 NaN
2013-01-06 NaN 0.113648 NaN 0.524988
|
使用 isin() 筛选:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
In [41]: df2 = df.copy()
In [42]: df2[‘E‘]=[‘one‘, ‘one‘,‘two‘,‘three‘,‘four‘,‘three‘]
In [43]: df2
Out[43]:
A B C D E
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three
In [44]: df2[df2[‘E‘].isin([‘two‘,‘four‘])]
Out[44]:
A B C D E
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
|
赋值一个新列,通过索引自动对齐数据
1
2
3
4
5
6
7
8
9
10
11
12
|
In [45]: s1 = pd.Series([1,2,3,4,5,6],index=pd.date_range(‘20130102‘,periods=6))
In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64
In [47]: df[‘F‘] = s1
|
按标签赋值
1
|
In [48]: df.at[dates[0],‘A‘] = 0
|
按位置赋值
1
|
In [49]: df.iat[0,1] = 0
|
通过numpy数组分配赋值
1
|
In [50]: df.loc[:,‘D‘] = np.array([5] * len(df))
|
之前的操作结果
1
2
3
4
5
6
7
8
9
|
In [51]: df
Out[51]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 0.119209 5 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2
2013-01-04 0.721555 -0.706771 -1.039575 5 3
2013-01-05 -0.424972 0.567020 0.276232 5 4
2013-01-06 -0.673690 0.113648 -1.478427 5 5
|
where 操作赋值.
1
2
3
4
5
6
7
8
9
10
11
|
In [52]: df2 = df.copy()
In [53]: df2[df2 > 0] = -df2
In [54]: df2
Out[54]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5
|
pandas主要使用np.nan替换丢失的数据. 默认情况下它并不包含在计算中. 请参阅 Missing Data section
重建索引允许更改/添加/删除指定轴索引,并返回数据副本.
1
2
3
4
5
6
7
8
9
|
In [55]: df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + [‘E‘])
In [56]: df1.loc[dates[0]:dates[1],‘E‘] = 1
In [57]: df1
Out[57]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1
2013-01-02 1.212112 -0.173215 0.119209 5 1 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5 3 NaN
|
删除任何有丢失数据的行.
1
2
3
4
|
In [58]: df1.dropna(how=‘any‘)
Out[58]:
A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5 1 1
|
填充丢失数据
1
2
3
4
5
6
7
|
In [59]: df1.fillna(value=5)
Out[59]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 5 1
2013-01-02 1.212112 -0.173215 0.119209 5 1 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2 5
2013-01-04 0.721555 -0.706771 -1.039575 5 3 5
|
获取值是否nan的布尔标记
1
2
3
4
5
6
7
|
In [60]: pd.isnull(df1)
Out[60]:
A B C D F E
2013-01-01 False False False False True False
2013-01-02 False False False False False False
2013-01-03 False False False False False True
2013-01-04 False False False False False True
|
参阅二元运算基础
计算时一般不包括丢失的数据
执行描述性统计
1
2
3
4
5
6
7
8
|
In [61]: df.mean()
Out[61]:
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64
|
在其他轴做相同的运算
1
2
3
4
5
6
7
8
9
|
In [62]: df.mean(1)
Out[62]:
2013-01-01 0.872735
2013-01-02 1.431621
2013-01-03 0.707731
2013-01-04 1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64
|
用于运算的对象有不同的维度并需要对齐.除此之外,pandas会自动沿着指定维度计算.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In [63]: s = pd.Series([1,3,5,np.nan,6,8],index=dates).shift(2)
In [64]: s
Out[64]:
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1
2013-01-04 3
2013-01-05 5
2013-01-06 NaN
Freq: D, dtype: float64
In [65]: df.sub(s,axis=‘index‘)
Out[65]:
A B C D F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4 1
2013-01-04 -2.278445 -3.706771 -4.039575 2 0
2013-01-05 -5.424972 -4.432980 -4.723768 0 -1
2013-01-06 NaN NaN NaN NaN NaN
|
在数据上使用函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
In [66]: df.apply(np.cumsum)
Out[66]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 -1.389850 10 1
2013-01-03 0.350263 -2.277784 -1.884779 15 3
2013-01-04 1.071818 -2.984555 -2.924354 20 6
2013-01-05 0.646846 -2.417535 -2.648122 25 10
2013-01-06 -0.026844 -2.303886 -4.126549 30 15
In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64
|
请参阅 直方图和离散化
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
In [68]: s = pd.Series(np.random.randint(0,7,size=10))
In [69]: s
Out[69]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype: int32
In [70]: s.value_counts()
Out[70]:
4 5
6 2
2 2
1 1
dtype: int64
|
序列可以使用一些字符串处理方法很轻易操作数据组中的每个元素,比如以下代码片断。 注意字符匹配方法默认情况下通常使用正则表达式(并且大多数时候都如此). 更多信息请参阅字符串向量方法.
1
2
3
4
5
6
7
8
9
10
11
12
13
|
In [71]: s = pd.Series([‘A‘, ‘B‘, ‘C‘, ‘Aaba‘, ‘Baca‘, np.nan, ‘CABA‘, ‘dog‘, ‘cat‘])
In [72]: s.str.lower()
Out[72]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
|
pandas提供各种工具以简便合并序列,数据桢,和组合对象, 在连接/合并类型操作中使用多种类型索引和相关数学函数.
请参阅合并部分
把pandas对象连接到一起
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
In [73]: df = pd.DataFrame(np.random.randn(10, 4))
In [74]: df
Out[74]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]
In [76]: pd.concat(pieces)
Out[76]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
|
SQL样式合并. 请参阅 数据库style联接
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
In [77]: left = pd.DataFrame({‘key‘: [‘foo‘, ‘foo‘], ‘lval‘: [1, 2]})
In [78]: right = pd.DataFrame({‘key‘: [‘foo‘, ‘foo‘], ‘rval‘: [4, 5]})
In [79]: left
Out[79]:
key lval
0 foo 1
1 foo 2
In [80]: right
Out[80]:
key rval
0 foo 4
1 foo 5
In [81]: pd.merge(left, right, on=‘key‘)
Out[81]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
|
添加行到数据增. 参阅 添加
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=[‘A‘,‘B‘,‘C‘,‘D‘])
In [83]: df
Out[83]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
In [84]: s = df.iloc[3]
In [85]: df.append(s, ignore_index=True)
Out[85]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 1.453749 1.208843 -0.080952 -0.264610
|
对于“group by”指的是以下一个或多个处理
请参阅 分组部分
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
In [86]: df = pd.DataFrame({‘A‘ : [‘foo‘, ‘bar‘, ‘foo‘, ‘bar‘,
....: ‘foo‘, ‘bar‘, ‘foo‘, ‘foo‘],
....: ‘B‘ : [‘one‘, ‘one‘, ‘two‘, ‘three‘,
....: ‘two‘, ‘two‘, ‘one‘, ‘three‘],
....: ‘C‘ : np.random.randn(8),
....: ‘D‘ : np.random.randn(8)})
....:
In [87]: df
Out[87]:
A B C D
0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three -0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two -0.392670 -0.136473
6 foo one 0.007207 -0.561757
7 foo three 1.928123 -1.623033
|
分组然后应用函数统计总和存放到结果组
1
2
3
4
5
6
|
In [88]: df.groupby(‘A‘).sum()
Out[88]:
C D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958
|
按多列分组为层次索引,然后应用函数
1
2
3
4
5
6
7
8
9
10
|
In [89]: df.groupby([‘A‘,‘B‘]).sum()
Out[89]:
C D
A B
bar one -1.814470 2.395985
three -0.595447 0.166599
two -0.392670 -0.136473
foo one -1.195665 -0.616981
three 1.928123 -1.623033
two 2.414034 1.600434
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
In [90]: tuples = list(zip(*[[‘bar‘, ‘bar‘, ‘baz‘, ‘baz‘,
....: ‘foo‘, ‘foo‘, ‘qux‘, ‘qux‘],
....: [‘one‘, ‘two‘, ‘one‘, ‘two‘,
....: ‘one‘, ‘two‘, ‘one‘, ‘two‘]]))
....:
In [91]: index = pd.MultiIndex.from_tuples(tuples, names=[‘first‘, ‘second‘])
In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=[‘A‘, ‘B‘])
In [93]: df2 = df[:4]
In [94]: df2
Out[94]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230
|
堆叠 函数 “压缩” 数据桢的列一个级别.
1
2
3
4
5
6
7
8
9
10
11
12
13
|
In [95]: stacked = df2.stack()
In [96]: stacked
Out[96]:
first second
bar one A 0.029399
B -0.542108
two A 0.282696
B -0.087302
baz one A -1.575170
B 1.771208
two A 0.816482
B 1.100230
dtype: float64
|
被“堆叠”数据桢或序列(有多个索引作为索引), 其堆叠的反向操作是未堆栈, 上面的数据默认反堆叠到上一级别:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
In [97]: stacked.unstack()
Out[97]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230
In [98]: stacked.unstack(1)
Out[98]:
second one two
first
bar A 0.029399 0.282696
B -0.542108 -0.087302
baz A -1.575170 0.816482
B 1.771208 1.100230
In [99]: stacked.unstack(0)
Out[99]:
first bar baz
second
one A 0.029399 -1.575170
B -0.542108 1.771208
two A 0.282696 0.816482
B -0.087302 1.100230
|
查看数据透视表.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
In [100]: df = pd.DataFrame({‘A‘ : [‘one‘, ‘one‘, ‘two‘, ‘three‘] * 3,
.....: ‘B‘ : [‘A‘, ‘B‘, ‘C‘] * 4,
.....: ‘C‘ : [‘foo‘, ‘foo‘, ‘foo‘, ‘bar‘, ‘bar‘, ‘bar‘] * 2,
.....: ‘D‘ : np.random.randn(12),
.....: ‘E‘ : np.random.randn(12)})
.....:
In [101]: df
Out[101]:
A B C D E
0 one A foo 1.418757 -0.179666
1 one B foo -1.879024 1.291836
2 two C foo 0.536826 -0.009614
3 three A bar 1.006160 0.392149
4 one B bar -0.029716 0.264599
5 one C bar -1.146178 -0.057409
6 two A foo 0.100900 -1.425638
7 three B foo -1.035018 1.024098
8 one C foo 0.314665 -0.106062
9 one A bar -0.773723 1.824375
10 two B bar -1.170653 0.595974
11 three C bar 0.648740 1.167115
|
我们可以从此数据非常容易的产生数据透视表:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
In [102]: pd.pivot_table(df, values=‘D‘, index=[‘A‘, ‘B‘], columns=[‘C‘])
Out[102]:
C bar foo
A B
one A -0.773723 1.418757
B -0.029716 -1.879024
C -1.146178 0.314665
three A 1.006160 NaN
B NaN -1.035018
C 0.648740 NaN
two A NaN 0.100900
B -1.170653 NaN
C NaN 0.536826
|
pandas有易用,强大且高效的函数用于高频数据重采样转换操作(例如,转换秒数据到5分钟数据), 这是很普遍的情况,但并不局限于金融应用, 请参阅时间序列章节
1
2
3
4
5
6
|
In [103]: rng = pd.date_range(‘1/1/2012‘, periods=100, freq=‘S‘)
In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
In [105]: ts.resample(‘5Min‘, how=‘sum‘)
Out[105]:
2012-01-01 25083
Freq: 5T, dtype: int32
|
时区表示
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In [106]: rng = pd.date_range(‘3/6/2012 00:00‘, periods=5, freq=‘D‘)
In [107]: ts = pd.Series(np.random.randn(len(rng)), rng)
In [108]: ts
Out[108]:
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64
In [109]: ts_utc = ts.tz_localize(‘UTC‘)
In [110]: ts_utc
Out[110]:
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64
|
转换到其它时区
1
2
3
4
5
6
7
8
|
In [111]: ts_utc.tz_convert(‘US/Eastern‘)
Out[111]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64
|
转换不同的时间跨度
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
In [112]: rng = pd.date_range(‘1/1/2012‘, periods=5, freq=‘M‘)
In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [114]: ts
Out[114]:
2012-01-31 -1.134623
2012-02-29 -1.561819
2012-03-31 -0.260838
2012-04-30 0.281957
2012-05-31 1.523962
Freq: M, dtype: float64
In [115]: ps = ts.to_period()
In [116]: ps
Out[116]:
2012-01 -1.134623
2012-02 -1.561819
2012-03 -0.260838
2012-04 0.281957
2012-05 1.523962
Freq: M, dtype: float64
In [117]: ps.to_timestamp()
Out[117]:
2012-01-01 -1.134623
2012-02-01 -1.561819
2012-03-01 -0.260838
2012-04-01 0.281957
2012-05-01 1.523962
Freq: MS, dtype: float64
|
转换时段并且使用一些运算函数, 下例中, 我们转换年报11月到季度结束每日上午9点数据
1
2
3
4
5
6
7
8
9
10
11
|
In [118]: prng = pd.period_range(‘1990Q1‘, ‘2000Q4‘, freq=‘Q-NOV‘)
In [119]: ts = pd.Series(np.random.randn(len(prng)), prng)
In [120]: ts.index = (prng.asfreq(‘M‘, ‘e‘) + 1).asfreq(‘H‘, ‘s‘) + 9
In [121]: ts.head()
Out[121]:
1990-03-01 09:00 -0.902937
1990-06-01 09:00 0.068159
1990-09-01 09:00 -0.057873
1990-12-01 09:00 -0.368204
1991-03-01 09:00 -1.144073
Freq: H, dtype: float64
|
自版本0.15起, pandas可以在数据桢中包含分类. 完整的文档, 请查看分类介绍 and the API文档.
1
|
In [122]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":[‘a‘, ‘b‘, ‘b‘, ‘a‘, ‘a‘, ‘e‘]})
|
转换原始类别为分类数据类型.
1
2
3
4
5
6
7
8
9
10
11
|
In [123]: df["grade"] = df["raw_grade"].astype("category")
In [124]: df["grade"]
Out[124]:
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]
|
重命令分类为更有意义的名称 (分配到Series.cat.categories对应位置!)
1
|
In [125]: df["grade"].cat.categories = ["very good", "good", "very bad"]
|
重排顺分类,同时添加缺少的分类(序列 .cat方法下返回新默认序列)
1
2
3
4
5
6
7
8
9
10
11
|
In [126]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
In [127]: df["grade"]
Out[127]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]
|
排列分类中的顺序,不是按词汇排列.
1
2
3
4
5
6
7
8
9
|
In [128]: df.sort("grade")
Out[128]:
id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good
|
类别列分组,并且也显示空类别.
1
2
3
4
5
6
7
8
9
|
In [129]: df.groupby("grade").size()
Out[129]:
grade
very bad 1
bad NaN
medium NaN
good 2
very good 3
dtype: float64
|
绘图文档.
1
2
3
4
|
In [130]: ts = pd.Series(np.random.randn(1000), index=pd.date_range(‘1/1/2000‘, periods=1000))
In [131]: ts = ts.cumsum()
In [132]: ts.plot()
Out[132]: <matplotlib.axes._subplots.AxesSubplot at 0xb02091ac>
|
在数据桢中,可以很方便的绘制带标签列:
1
2
3
4
5
6
|
In [133]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
.....: columns=[‘A‘, ‘B‘, ‘C‘, ‘D‘])
.....:
In [134]: df = df.cumsum()
In [135]: plt.figure(); df.plot(); plt.legend(loc=‘best‘)
Out[135]: <matplotlib.legend.Legend at 0xb01c9cac>
|
1
|
In [136]: df.to_csv(‘foo.csv‘)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In [137]: pd.read_csv(‘foo.csv‘)
Out[137]:
Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
.. ... ... ... ... ...
993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
[1000 rows x 5 columns]
|
读写HDF存储
写入HDF5存储
1
|
In [138]: df.to_hdf(‘foo.h5‘,‘df‘)
|
读取HDF5存储
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In [139]: pd.read_hdf(‘foo.h5‘,‘df‘)
Out[139]:
A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933 -0.741620 -1.962409
2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
... ... ... ... ...
2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
[1000 rows x 4 columns]
|
读写MS Excel
写入excel文件
1
|
In [140]: df.to_excel(‘foo.xlsx‘, sheet_name=‘Sheet1‘)
|
读取excel文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In [141]: pd.read_excel(‘foo.xlsx‘, ‘Sheet1‘, index_col=None, na_values=[‘NA‘])
Out[141]:
A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933 -0.741620 -1.962409
2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
... ... ... ... ...
2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
[1000 rows x 4 columns]
|
如果尝试这样操作可能会看到像这样的异常:
1
2
3
4
5
|
>>> if pd.Series([False, True, False]):
print("I was true")
Traceback
...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
|
查看对照获取解释和怎么做的帮助
也可以查看陷阱.
标签:alt 部分 line rip rom 字符 不包含 hdf bae
原文地址:https://www.cnblogs.com/wanshuai/p/9176057.html