标签:pre patch fine com provided its gnu nan main
sort_wp
""" SORT: A Simple, Online and Realtime Tracker Copyright (C) 2016 Alex Bewley alex@dynamicdetection.com This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ from __future__ import print_function import os import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from skimage import io from sklearn.utils.linear_assignment_ import linear_assignment import glob import time import argparse from filterpy.kalman import KalmanFilter def iou(a, b): """ Computes IUO between two bboxes in the form [x1,y1,x2,y2] """ xx1 = np.maximum(a[0], b[0]) yy1 = np.maximum(a[1], b[1]) xx2 = np.minimum(a[2], b[2]) yy2 = np.minimum(a[3], b[3]) w = np.maximum(0., xx2 - xx1) h = np.maximum(0., yy2 - yy1) inter = w * h aarea = (a[2] - a[0]) * (a[3] - a[1]) barea = (b[2] - b[0]) * (b[3] - b[1]) o = inter / (aarea + barea - inter) return(o) def nms(dets, thresh): x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep def convert_bbox_to_z(bbox): """ Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio """ w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] x = bbox[0] + w / 2. y = bbox[1] + h / 2. s = w * h #scale is just area r = w / float(h) return np.array([x, y, s, r]).reshape((4, 1)) def convert_x_to_bbox(x,score=None): """ Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right """ w = np.sqrt(x[2]*x[3]) h = x[2] / w if(score == None): return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4)) else: return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5)) class KalmanBoxTracker(object): """ This class represents the internel state of individual tracked objects observed as bbox. """ count = 0 def __init__(self, bbox, cls_=0): """ Initialises a tracker using initial bounding box. """ #define constant velocity model self.kf = KalmanFilter(dim_x=7, dim_z=4) self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]) self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]) self.kf.R[2:,2:] *= 10. self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities self.kf.P *= 10. self.kf.Q[-1,-1] *= 0.01 self.kf.Q[4:,4:] *= 0.01 self.kf.x[:4] = convert_bbox_to_z(bbox) self.time_since_update = 0 self.id = KalmanBoxTracker.count KalmanBoxTracker.count += 1 self.history = [] self.hits = 0 self.hit_streak = 0 self.age = 0 self.cls_ = cls_ def update(self, bbox, cls_=0): """ Updates the state vector with observed bbox. """ self.time_since_update = 0 self.history = [] self.hits += 1 self.hit_streak += 1 self.kf.update(convert_bbox_to_z(bbox)) self.cls_ = cls_ def predict(self): """ Advances the state vector and returns the predicted bounding box estimate. """ if((self.kf.x[6] + self.kf.x[2])<=0): self.kf.x[6] *= 0.0 self.kf.predict() self.age += 1 if(self.time_since_update>0): self.hit_streak = 0 self.time_since_update += 1 self.history.append(convert_x_to_bbox(self.kf.x)) return self.history[-1] def get_state(self): """ Returns the current bounding box estimate. """ return convert_x_to_bbox(self.kf.x, 0.8) def associate_detections_to_trackers(detections, trackers, iou_threshold = 0.7): """ Assigns detections to tracked object (both represented as bounding boxes) Returns 3 lists of matches, unmatched_detections and unmatched_trackers """ if(len(trackers)==0): return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) iou_matrix = np.zeros((len(detections),len(trackers)),dtype=np.float32) for d,det in enumerate(detections): for t,trk in enumerate(trackers): iou_matrix[d,t] = iou(det,trk) matched_indices = linear_assignment(-iou_matrix) unmatched_detections = [] for d,det in enumerate(detections): if(d not in matched_indices[:,0]): unmatched_detections.append(d) unmatched_trackers = [] for t,trk in enumerate(trackers): if(t not in matched_indices[:,1]): unmatched_trackers.append(t) #filter out matched with low IOU matches = [] for m in matched_indices: if(iou_matrix[m[0],m[1]]<iou_threshold): unmatched_detections.append(m[0]) unmatched_trackers.append(m[1]) else: matches.append(m.reshape(1,2)) if(len(matches)==0): matches = np.empty((0,2),dtype=int) else: matches = np.concatenate(matches,axis=0) print(matches) print(unmatched_detections) print(unmatched_trackers) return matches, np.array(unmatched_detections), np.array(unmatched_trackers) class Sort(object): def __init__(self, max_age=1, min_hits=3): """ Sets key parameters for SORT """ self.max_age = max_age self.min_hits = min_hits self.trackers = [] self.frame_count = 0 def update(self, dets): """ Params: dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...] Requires: this method must be called once for each frame even with empty detections. Returns the a similar array, where the last column is the object ID. NOTE: The number of objects returned may differ from the number of detections provided. """ boxes, cls = dets[:, :5], dets[:, 5] dets = boxes print("------------------") print(dets[:, :4]) print("------------------") self.frame_count += 1 #get predicted locations from existing trackers. trks = np.zeros((len(self.trackers), 5)) # print(trks) to_del = [] ret = [] n_box = [] # print(self.trackers) for t,trk in enumerate(trks): # print(t) # print(trk) pos = self.trackers[t].predict()[0] trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] if(np.any(np.isnan(pos))): to_del.append(t) trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) """ keep = nms(trks, 0.3) for t in range(len(trks)): if t not in to_del and t not in keep: to_del.append(t) """ for t in reversed(to_del): self.trackers.pop(t) matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks) #update matched trackers with assigned detections for t,trk in enumerate(self.trackers): if(t not in unmatched_trks): d = matched[np.where(matched[:,1]==t)[0],0] trk.update(dets[d,:][0], cls[d]) #create and initialise new trackers for unmatched detections for i in unmatched_dets: trk = KalmanBoxTracker(dets[i,:], cls[i]) self.trackers.append(trk) i = len(self.trackers) print(‘trackers cnt:‘, i) for trk in reversed(self.trackers): # for trk in self.trackers: d = trk.get_state()[0] # if(trk.time_since_update < 1): # n_box.append([int(d[0]), int(d[1]), int(d[2]-d[0]), int(d[3]-d[1])]) print("update since", trk.time_since_update) # print("frame cnt:", self.frame_count) print("hit streak:", trk.hit_streak) if((trk.time_since_update < 1) and (trk.hit_streak == 0 or trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits)): # ret.append(np.concatenate((d, [trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive ret.append(np.concatenate((d, [trk.cls_, trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive n_box.append([int(d[0]), int(d[1]), int(d[2]-d[0]), int(d[3]-d[1])]) i -= 1 #remove dead tracklet if(trk.time_since_update > self.max_age): self.trackers.pop(i) print("xxxxxxxxxxxxxxxxxxxxxxx") print(n_box) print("xxxxxxxxxxxxxxxxxxxxxxx") if(len(ret)>0): return np.concatenate(ret) return np.empty((0, 6)) # def parse_args(): # """Parse input arguments.""" # parser = argparse.ArgumentParser(description=‘SORT demo‘) # parser.add_argument(‘--display‘, dest=‘display‘, help=‘Display online tracker output (slow) [False]‘,action=‘store_true‘) # args = parser.parse_args() # return args if __name__ == ‘__main__‘: # all train # sequences = [‘PETS09-S2L1‘,‘TUD-Campus‘,‘TUD-Stadtmitte‘,‘ETH-Bahnhof‘,‘ETH-Sunnyday‘,‘ETH-Pedcross2‘,‘KITTI-13‘,‘KITTI-17‘,‘ADL-Rundle-6‘,‘ADL-Rundle-8‘,‘Venice-2‘] # IMGS_DIR = ‘./236frames‘ DET_DIR = ‘./MOT‘ # args = parse_args() # phase = ‘train‘ total_time = 0.0 total_frames = 0 # colours = np.random.rand(32,3) #used only for display if not os.path.exists(‘output‘): os.makedirs(‘output‘) mot_tracker = Sort() #create instance of the SORT tracker # imgs_fn_list = [os.path.join(IMGS_DIR, fn) for fn in sorted(os.listdir(IMGS_DIR))] dets_fn_list = [os.path.join(DET_DIR, fn) for fn in sorted(os.listdir(DET_DIR))] # print(dets_fn_list) fout = open("output/adas.txt", "w") for i in range(len(dets_fn_list)): # for i in range(210): total_frames += 1 print("process #", total_frames) dets = np.loadtxt(dets_fn_list[i], delimiter=‘ ‘) # print(dets) # det_boxes = [] if len(dets)>0: if dets.ndim == 1: dets = dets[np.newaxis, :] # dets = dets[:, :5] # det_boxes = dets dets[:, 2:4] += dets[:, 0:2] # convert to [x1,y1,w,h] to [x1,y1,x2,y2] else: dets = np.empty((0, 6), dtype=int) # print(dets.shape) start_time = time.time() trackers = mot_tracker.update(dets) cycle_time = time.time() - start_time total_time += cycle_time boxes = trackers[:, :6].tolist() # for k in range(len(det_boxes)): # x1, y1, x2, y2, score, c = det_boxes[k, :] # boxes.append([x1, y1, x2, y2, score, c]) # boxes = np.asarray(boxes) # keep = nms(boxes, 0.2) # boxes = boxes[keep, :] for b in boxes: fout.write("%d %d %d %d %d %d\n"%(i+1, int(b[0]), int(b[1]), int(b[2]-b[0]), int(b[3]-b[1]), int(b[5]))) """ for d in trackers: fout.write(‘%d %d %d %d %d %d %d\n‘%(i+1, int(d[4]), int(d[0]), int(d[1]), int(d[2]-d[0]), int(d[3]-d[1]), int(d[5]))) """ fout.close() print("Total Tracking took: %.3f s for %d frames or %.1f FPS"%(total_time, total_frames, total_frames / total_time))
输入的格式是x1,y1,w,h,prob,cls,也就是所谓的MOT格式
标签:pre patch fine com provided its gnu nan main
原文地址:https://www.cnblogs.com/ymjyqsx/p/9183196.html