标签:cti selection 常用方法 观察 评分 col ISE and 导致
自动调参,适合小数据集。相当于写一堆循环,自己设定参数列表,一个一个试,找到最合适的参数。数据量大可以使用快速调优的方法-----坐标下降【贪心,拿当前对模型影响最大的参数调优,直到最优,但可能获得的是全局最优】。
class sklearn.model_selection.
GridSearchCV
(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch=‘2*n_jobs’, error_score=’raise’, return_train_score=’warn’)
iid:默认True,为True时,默认为各个样本fold概率分布一致,误差估计为所有样本之和,而非各个fold的平均。
verbose:日志冗长度,int:冗长度,0:不输出训练过程,1:偶尔输出,>1:对每个子模型都输出。
n_jobs: 并行数,int:个数,-1:跟CPU核数一致, 1:默认值。
pre_dispatch:指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次,进行预测的常用方法和属性
grid.fit():运行网格搜索
grid_scores_:给出不同参数情况下的评价结果
best_params_:描述了已取得最佳结果的参数的组合
best_score_:成员提供优化过程期间观察到的最好的评分
from sklearn.grid_search import GridSearchCV
#随机森林的参数 tree_param_grid={‘min_sample_split‘:list((3,6,9)),‘n_estimators‘:list((10,50,100)) grid=GridSearchCV(RandomForestRegressor(),param_grid=tree_param_grid,cv=5) grid.fit(x,y) grid.grid_scores_,grid.best_params_,grid.best_score_
结果:
sklearn学习8-----GridSearchCV(自动调参)
标签:cti selection 常用方法 观察 评分 col ISE and 导致
原文地址:https://www.cnblogs.com/Lee-yl/p/9190192.html