标签:tutorial flow 一个 span run input esc reduce dict
一:保存
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #定义两个placeholder x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32,[None,10]) #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元 W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数 # loss = tf.reduce_mean(tf.square(y-prediction)) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=prediction)) #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量 init = tf.global_variables_initializer() #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置 #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) for epoch in range(11): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc)) #保存模型 saver.save(sess,‘net/my_net.ckpt‘)
结果:
Iter 0,Testing Accuracy 0.8252 Iter 1,Testing Accuracy 0.8916 Iter 2,Testing Accuracy 0.9008 Iter 3,Testing Accuracy 0.906 Iter 4,Testing Accuracy 0.9091 Iter 5,Testing Accuracy 0.9104 Iter 6,Testing Accuracy 0.911 Iter 7,Testing Accuracy 0.9127 Iter 8,Testing Accuracy 0.9145 Iter 9,Testing Accuracy 0.9166 Iter 10,Testing Accuracy 0.9177
二:载入
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #定义两个placeholder x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32,[None,10]) #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元 W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数 # loss = tf.reduce_mean(tf.square(y-prediction)) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=prediction)) #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量 init = tf.global_variables_initializer() #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置 #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) # 未载入模型时的识别率 print(‘未载入识别率‘,sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})) saver.restore(sess,‘net/my_net.ckpt‘) # 载入模型后的识别率 print(‘载入后识别率‘,sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))
结果:
未载入识别率 0.098 INFO:tensorflow:Restoring parameters from net/my_net.ckpt 载入后识别率 0.9177
标签:tutorial flow 一个 span run input esc reduce dict
原文地址:https://www.cnblogs.com/felixwang2/p/9190692.html