码迷,mamicode.com
首页 > 其他好文 > 详细

膨胀卷积与IDCNN

时间:2018-06-17 13:29:58      阅读:3042      评论:0      收藏:0      [点我收藏+]

标签:range   http   就是   相同   img   class   als   col   ups   

Dilation 卷积,也被称为:空洞卷积、膨胀卷积。

一、一般的卷积操作:

首先,可以通过动态图,理解正常卷积的过程:

技术分享图片

如上图,可以看到卷积操作。

对于CNN结构,通常包括如下部分:

输入层 (input layer)---  卷积计算层 (CONV)--- 激励层(RELU) --- 池化层(Pooling) --- 全连接层(FC)

通常利用卷积来实现数据的特征提取。卷积层还有一个权值共享的原则:用一句话表达就是每个神经元只关注一个特征

当然卷积完经过激励层做一个非线性映射,输出后就到Pooling layer了。

池化层的作用:

(1)压缩数据和参数的量,减小过拟合。

(2)增大感受野。

主要两种方法:Max Pooling  和  Average Pooling

对于有些算法,池化完还需要upsampling获得原始数的尺寸进行后续操作。由于这种通过卷积操作存在内部数据丢失的问题,存在信息损失,有人提出了dilated conv算法,即不通过池化获得较大的视野,并减小信息损失。

二、膨胀卷积

 

 

技术分享图片

如上图,膨胀卷积的好处是不做pooling损失信息的情况下,加大了感受野,让每个卷积输出都包含较大范围的信息。在图像需要全局信息或者自然语言处理中需要较长的sequence信息依赖的问题中,都能很好的应用。

 

 在tensorflow中代码为:

tf.nn.atrous_conv2d(value,filters,rate,padding,name=None)

  value:输入的卷积图像,[batch, height, width, channels]。

     filters:卷积核,[filter_height, filter_width, channels, out_channels],通常NLP相关height设为1。

  rate:正常的卷积通常会有stride,即卷积核滑动的步长,而膨胀卷积通过定义卷积和当中穿插的rate-1个0的个数,实现对原始数据采样间隔变大。

  padding:”SAME”:补零   ; ”VALID”:丢弃多余的

 

 三、IDCNN(Iterated Dilated CNN)

模型是4个大的相同结构的Dilated CNN block拼在一起,每个block里面是dilation width为1, 1, 2的三层Dilated卷积层,所以叫做 Iterated Dilated CNN。参考代码实现:

layers = [
            {
                ‘dilation‘: 1
            },
            {
                ‘dilation‘: 1
            },
            {
                ‘dilation‘: 2
            },
        ]
finalOutFromLayers = []
totalWidthForLastDim = 0
for j in range(4):
    for i in range(len(layers)):
        dilation =layers[i][‘dilation‘]
        isLast = True if i == (len(layers) - 1) else False
        w = tf.get_variable("filterW",shape=[1, filter_width, num_filter,num_filter],initializer=tf.contrib.layers.xavier_initializer())
        b = tf.get_variable("filterB", shape=[num_filter])
        conv = tf.nn.atrous_conv2d(layerInput,w,rate=dilation,padding="SAME")
        conv = tf.nn.bias_add(conv, b)
        conv = tf.nn.relu(conv)
        if isLast:
            finalOutFromLayers.append(conv)
            totalWidthForLastDim += num_filter
        layerInput = conv
finalOut = tf.concat(axis=3, values=finalOutFromLayers)

  通过代码可以看到具体的IDCNN的实现流程以及输出的结合方式。

 

膨胀卷积与IDCNN

标签:range   http   就是   相同   img   class   als   col   ups   

原文地址:https://www.cnblogs.com/pinking/p/9192546.html

(1)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!