码迷,mamicode.com
首页 > 其他好文 > 详细

可先复习一手高中数学基础

时间:2018-06-24 15:03:25      阅读:218      评论:0      收藏:0      [点我收藏+]

标签:方法   大于   相关   color   sim   简单   span   函数   表示   

目标:  

    平面直角坐标系与角

  函数的相关概念

        区间  邻域  定义  表示法

  函数的特殊性积运算

  幂函数、指数函数、对数函数

  三角函数和反三角函数

  初等函数

  平面二次曲线

        椭圆、双曲线、抛物线

 

 

第一节

  平面直角坐标系

    右上为第一象限 其余逆时针是

 

  π:元的周长与直径的比值

  1 rad = 180°/π  1° = (π/180°)*rad

  弧度制进制为60

 

  区间内  开区间画法时空心  闭区间时实心

 

  邻域  

    设a和δ为两个实数,且δ>0 ,则满足不等式 | x-a | > δ 的一切实数x的集合全体 曾为点a的邻域 记作U(a,δ)

    根于不等式性质当x-a>0时  | x-a | = x-a 有 x-a > δ  得出 x > a + δ

             当x-a<0时  | x-a | = -(x-a) = a-x 有a-x > δ  得出 a- δ > x

          所以 有  a + δ < x < a - δ

    点a称为邻域的中心 δ为邻域的半径  可见  点a的邻域其实就是以点a为中心 长度为2δ的开区间(a-δ,a+δ)

    若再把邻域中心去掉 则得到点a的去心δ邻域U(a,δ){ x | a-δ < x <a+δ ,x≠a}

  补一手不等式解法根据3性质

1、对于形如︱a︱的一类问题 

  只要根据绝对值的3个性质,判断出a的3种情况,便能快速去掉绝对值符号。 当a>0时,︱a︱=a (性质1,正数的绝对值是它本身) ; 当a=0 时︱a︱=0 (性质2,0的绝对值是0) ; 
当 a<0 时;︱a︱=–a (性质3,负数的绝对值是它的相反数) 。 
2、对于形如︱a+b︱的一类问题 
  我们只要把a+b看作是一个整体,判断出a+b的3种情况,根据绝对值的3个性质,便能快速去掉绝对值符号,正确进行化简。 
当a+b>0时,︱a+b︱=a +b(性质1,正数的绝对值是它本身) ; 当a+b=0 时,︱a+b︱=0 (性质2,0的绝对值是0) ; 
当 a+b<0 时,︱a+b︱=–(a+b)=–a-b (性质3,负数的绝对值是它的相反数) 
3、对于形如︱a-b︱的一类问题 
  同样,按上面的方法,我们仍然把a-b看作一个整体,判断出a-b 的3种情况,根据绝对值的3个性质,去掉绝对值符号。 
但在去括号时最容易出现错误。如何快速去掉绝对值符号,条件非常简单,只要你能判断出a与b的大小即可。因为︱大-小︱=︱小-大︱=大-小,所以当a>b时,︱a-b︱=a-b,︱b-a︱=a-b.请记住口诀:无论是大减小,还是小减大,去掉绝对值,都是大减小。 4、对于数轴型的一类问题, 
根据3的口诀来化简,更有效。如︱a-b︱的一类问题,只要判断出a在b的右边,便可得到︱a-b︱=a-b,︱b-a︱=a-b。 

5、对于绝对值号里有三个数或者三个以上数的运算 
   万变不离其宗,还是把绝对值号里的式子看成一个整体,把它与0比较,大于0直接去绝对值号,小于0的整体前面加负号。
 
 

  

可先复习一手高中数学基础

标签:方法   大于   相关   color   sim   简单   span   函数   表示   

原文地址:https://www.cnblogs.com/fcfc/p/9220459.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!