码迷,mamicode.com
首页 > 其他好文 > 详细

Codeforces Round #491 (Div. 2) F. Concise and clear

时间:2018-06-24 15:04:38      阅读:361      评论:0      收藏:0      [点我收藏+]

标签:cond   enc   while   gre   tom   container   set   several   state   

F. Concise and clear
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Vasya is a regular participant at programming contests and is already experienced in finding important sentences in long statements. Of course, numbers constraints are important — factorization of a number less than 1000000 is easier than of a number less than 1000000000. However, sometimes it‘s hard to understand the number at the first glance. Could it be shortened? For example, instead of 1000000 you could write 106106, instead of 1000000000  —109109, instead of 1000000007 — 109+7109+7.

Vasya decided that, to be concise, the notation should follow several rules:

  • the notation should only consist of numbers, operations of addition ("+"), multiplication ("*") and exponentiation ("^"), in particular, the use of braces is forbidden;
  • the use of several exponentiation operations in a row is forbidden, for example, writing "2^3^4" is unacceptable;
  • the value of the resulting expression equals to the initial number;
  • the notation should consist of the minimal amount of symbols.

Given nn, find the equivalent concise notation for it.

Input

The only line contains a single integer nn (1n100000000001≤n≤10000000000).

Output

Output a concise notation of the number nn. If there are several concise notations, output any of them.

Examples
input
Copy
2018
output
Copy
2018
input
Copy
1000000007
output
Copy
10^9+7
input
Copy
10000000000
output
Copy
100^5
input
Copy
2000000000
output
Copy
2*10^9
Note

The third sample allows the answer 10^10 also of the length 55.

 

 思路:10^10特判一下,之后剩的位数不超过10位,这样通过改字符来缩减长度最多出现4个字符,又单独的乘法和加法不会缩减长度,所以一定有^,于是我们将n表示成a^b*c+d的形式,a从2枚举到sqrt(n),b从2枚举到loga(n),贪心找最大的c,然后唯一确定一个d,这样就得到了一个sqrt(n)*log(n)复杂度的假算法,会WA9。此算法假在c或d也可能表示成e^f的形式,于是我们通过一个map预处理出所有能表示成这个形式的数,查询的时候和map里的比一下取长度最短就行了。预处理和枚举复杂度都为O(sqrt(n)*log2(n))。

技术分享图片
  1 #include <iostream>
  2 #include <fstream>
  3 #include <sstream>
  4 #include <cstdlib>
  5 #include <cstdio>
  6 #include <cmath>
  7 #include <string>
  8 #include <cstring>
  9 #include <algorithm>
 10 #include <queue>
 11 #include <stack>
 12 #include <vector>
 13 #include <set>
 14 #include <map>
 15 #include <list>
 16 #include <iomanip>
 17 #include <cctype>
 18 #include <cassert>
 19 #include <bitset>
 20 #include <ctime>
 21 
 22 using namespace std;
 23 
 24 #define pau system("pause")
 25 #define ll long long
 26 #define pii pair<int, int>
 27 #define pb push_back
 28 #define mp make_pair
 29 #define clr(a, x) memset(a, x, sizeof(a))
 30 
 31 const double pi = acos(-1.0);
 32 const int INF = 0x3f3f3f3f;
 33 const int MOD = 1e9 + 7;
 34 const double EPS = 1e-9;
 35 
 36 /*
 37 #include <ext/pb_ds/assoc_container.hpp>
 38 #include <ext/pb_ds/tree_policy.hpp>
 39 
 40 using namespace __gnu_pbds;
 41 tree<pli, null_type, greater<pli>, rb_tree_tag, tree_order_statistics_node_update> T;
 42 */
 43 
 44 ll n;
 45 string ans;
 46 void add(string &S, ll t) {
 47     char s[29];
 48     int l = 0;
 49     while (t) {
 50         s[++l] = t % 10;
 51         t /= 10;
 52     }
 53     while (l) {
 54         S += s[l] + 0;
 55         --l;
 56     }
 57 }
 58 map<ll, string> mmp;
 59 void pre() {
 60     for (ll a = 2; a <= sqrt(n + 0.5); ++a) {
 61         ll tt = a;
 62         for (int b = 2; ; ++b) {
 63             tt *= a;
 64             if (tt > n) break;
 65             string t2 = "";
 66             add(t2, a);
 67             t2 += "^";
 68             add(t2, b);
 69             if (mmp.count(tt)) {
 70                 string t1 = mmp[tt];
 71                 if (t2.length() < t1.length()) {
 72                     mmp[tt] = t2;
 73                 }
 74             } else {
 75                 mmp[tt] = t2;
 76             }
 77         }
 78     }
 79 }
 80 int main() {
 81     scanf("%lld", &n);
 82     if (n < 1000) {
 83         printf("%lld\n", n);
 84     } else {
 85         pre();
 86         add(ans, n);
 87         for (ll a = 2; a <= sqrt(n + 0.5); ++a) {
 88             ll tt = a;
 89             for (ll b = 2; ; ++b) {
 90                 tt *= a;
 91                 if (tt > n) break;
 92                 string res = "";
 93                 add(res, a);
 94                 res += "^";
 95                 add(res, b);
 96                 ll c = n / tt;
 97                 for (ll tc = c; tc >= max(1ll, c - 0); --tc) {
 98                     ll d = n - tt * tc;
 99                     string res2 = res;
100                     if (1 != tc) {
101                         res2 += "*";
102                         string res4 = "";
103                         add(res4, tc);
104                         if (mmp.count(tc)) {
105                             if (res4.length() < mmp[tc].length()) {
106                                 res2 += res4;
107                             } else {
108                                 res2 += mmp[tc];
109                             }
110                         } else {
111                             res2 += res4;
112                         }
113                     }
114                     if (d) {
115                         res2 += "+";
116                         string res3 = "";
117                         add(res3, d);
118                         if (mmp.count(d)) {
119                             if (res3.length() < mmp[d].length()) {
120                                 res2 += res3;
121                             } else {
122                                 res2 += mmp[d];
123                             }
124                         } else {
125                             res2 += res3;
126                         }
127                     }
128                     if (res2.length() < ans.length()) {
129                         ans = res2;
130                     }
131                 }
132             }
133         }
134         cout << ans << endl;
135     }
136     return 0;
137 }
View Code

 

Codeforces Round #491 (Div. 2) F. Concise and clear

标签:cond   enc   while   gre   tom   container   set   several   state   

原文地址:https://www.cnblogs.com/BIGTOM/p/9220425.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!