标签:red 网络 类型 www. type die int pre 声明
使用Tensorflow实现一个简单的神经网络
输入数据:
隐藏层:
输出层:
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 添加层(输入层,隐藏层,输出层) # inputs,输入数据 # insize,输入神经数,out_size,输出神经数 # activation_function,激活函数,None就是不作处理 def add_layer(inputs, in_size, out_size, activation_function=None): # (1,10) 正态分布随机数 Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) # 点积 Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs # np.newaxis, 增加一维,[300, 1] x_data = np.linspace(-1, 1, 300, dtype=np.float32)[:, np.newaxis] # 躁点 noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32) y_data = np.square(x_data) - 0.5 + noise # 占位符 # [None,1], 任意行,1列 xs = tf.placeholder(tf.float32, [None, 1]) ys = tf.placeholder(tf.float32, [None, 1]) # 隐藏层 # 激活函数使用Relu,非线性化函数 # 为什么使用激活函数参考 # https://www.cnblogs.com/silence-tommy/p/7113405.html l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu) # 输出层 prediction = add_layer(l1, 10, 1, activation_function=None) # 损失函数 # reduct_sum, axis=【1】,将整行的所有列相加 loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), axis=[1])) # 优化,梯度下降,减少损失函数的值 # 得到使损失函数最低的W,也就是最优解 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for i in range(1000): sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) if i % 50 == 0: print(sess.run(loss, feed_dict={xs: x_data, ys: y_data})) fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.scatter(x_data, y_data) plt.show()
相关方法
tf:
np:
Reference:
https://www.cnblogs.com/silence-tommy/p/7113405.html
https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/
标签:red 网络 类型 www. type die int pre 声明
原文地址:https://www.cnblogs.com/jimobuwu/p/9220548.html