光照
1. 首先需要定义这样的顶点结构
struct CUSTOMVERTEX { D3DXVECTOR3position; // 顶点 D3DXVECTOR3normal; // 法向量 }; // Custom flexible vertex format (FVF). #define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_NORMAL)
2. 然后创建一个圆柱体顶点模型
// Create the vertex buffer.
if( FAILED(g_pd3dDevice->CreateVertexBuffer(50 * 2 * sizeof( CUSTOMVERTEX),
0, D3DFVF_CUSTOMVERTEX,
D3DPOOL_DEFAULT, &g_pVB, NULL ) ))
{
return E_FAIL;
}
// Fill the vertex buffer. We arealgorithmically generating a cylinder
// here, including the normals, which are usedfor lighting.
CUSTOMVERTEX* pVertices;
if( FAILED(g_pVB->Lock(0, 0, ( void** )&pVertices,0 ) ) )
return E_FAIL;
for( DWORDi = 0; i< 50; i++ )
{
FLOAT theta= ( 2 * D3DX_PI * i) / ( 50 - 1 );
pVertices[2 * i + 0].position = D3DXVECTOR3( sinf(theta ), -1.0f, cosf(theta ) );
pVertices[2 * i + 0].normal = D3DXVECTOR3( sinf(theta ), 0.0f, cosf(theta ) );
pVertices[2 * i + 1].position = D3DXVECTOR3( sinf(theta ), 1.0f, cosf(theta ) );
pVertices[2 * i + 1].normal = D3DXVECTOR3( sinf(theta ), 0.0f, cosf(theta ) );
}
g_pVB->Unlock();
3. 创建灯光
// Set up a material. The material here just has thediffuse and ambient
// colors set to yellow. Note that only onematerial can be used at a time.
D3DMATERIAL9 mtrl; //因为有光照,所以需要创建一个材质来接受
ZeroMemory( &mtrl, sizeof( D3DMATERIAL9 ) );
mtrl.Diffuse.r = mtrl.Ambient.r =1.0f;
mtrl.Diffuse.g = mtrl.Ambient.g =1.0f;
mtrl.Diffuse.b = mtrl.Ambient.b =0.0f;
mtrl.Diffuse.a = mtrl.Ambient.a =1.0f;
g_pd3dDevice->SetMaterial( &mtrl);
// Set up a white, directional light, with anoscillating direction.
// Note that many lights may be active at atime (but each one slows down
// the rendering of our scene). However, herewe are just using one. Also,
// we need to set the D3DRS_LIGHTINGrenderstate to enable lighting
D3DXVECTOR3 vecDir;
D3DLIGHT9 light;//创建灯光
ZeroMemory( &light, sizeof( D3DLIGHT9 ) );
light.Type= D3DLIGHT_DIRECTIONAL; //设置为平行光
light.Diffuse.r = 1.0f;
light.Diffuse.g = 1.0f;
light.Diffuse.b = 1.0f;
vecDir = D3DXVECTOR3(cosf( timeGetTime()/ 350.0f ), //方向随时间变化
1.0f,
sinf( timeGetTime()/ 350.0f ) );
D3DXVec3Normalize( ( D3DXVECTOR3* )&light.Direction, &vecDir); //单位化方向
light.Range= 1000.0f;//方向光这个参数无效
g_pd3dDevice->SetLight( 0, &light);
g_pd3dDevice->LightEnable( 0, TRUE);
g_pd3dDevice->SetRenderState( D3DRS_LIGHTING,TRUE ); //开启光照
// Finally, turn on some ambient light.
g_pd3dDevice->SetRenderState( D3DRS_AMBIENT,0x00202020 ); //设置环境光比较简单,
效果:
全部代码:
//-----------------------------------------------------------------------------
// File: Lights.cpp
//
// Desc: Rendering 3D geometry is much more interesting when dynamic lighting
// is added to the scene. To use lighting in D3D, you must create one or
// lights, setup a material, and make sure your geometry contains surface
// normals. Lights may have a position, a color, and be of a certain type
// such as directional (light comes from one direction), point (light
// comes from a specific x,y,z coordinate and radiates in all directions)
// or spotlight. Materials describe the surface of your geometry,
// specifically, how it gets lit (diffuse color, ambient color, etc.).
// Surface normals are part of a vertex, and are needed for the D3D's
// internal lighting calculations.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//-----------------------------------------------------------------------------
#include <Windows.h>
#include <mmsystem.h>
#include <d3dx9.h>
#pragma warning( disable : 4996 ) // disable deprecated warning
#include <strsafe.h>
#pragma warning( default : 4996 )
//-----------------------------------------------------------------------------
// Global variables
//-----------------------------------------------------------------------------
LPDIRECT3D9 g_pD3D = NULL; // Used to create the D3DDevice
LPDIRECT3DDEVICE9 g_pd3dDevice = NULL; // Our rendering device
LPDIRECT3DVERTEXBUFFER9 g_pVB = NULL; // Buffer to hold vertices
// A structure for our custom vertex type. We added a normal, and omitted the
// color (which is provided by the material)
struct CUSTOMVERTEX
{
D3DXVECTOR3 position; // The 3D position for the vertex
D3DXVECTOR3 normal; // The surface normal for the vertex
};
// Our custom FVF, which describes our custom vertex structure
#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_NORMAL)
//-----------------------------------------------------------------------------
// Name: InitD3D()
// Desc: Initializes Direct3D
//-----------------------------------------------------------------------------
HRESULT InitD3D( HWND hWnd )
{
// Create the D3D object.
if( NULL == ( g_pD3D = Direct3DCreate9( D3D_SDK_VERSION ) ) )
return E_FAIL;
// Set up the structure used to create the D3DDevice. Since we are now
// using more complex geometry, we will create a device with a zbuffer.
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory( &d3dpp, sizeof( d3dpp ) );
d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;
d3dpp.EnableAutoDepthStencil = TRUE;
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
// Create the D3DDevice
if( FAILED( g_pD3D->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, hWnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp, &g_pd3dDevice ) ) )
{
return E_FAIL;
}
// Turn off culling
g_pd3dDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE );
// Turn on the zbuffer
g_pd3dDevice->SetRenderState( D3DRS_ZENABLE, TRUE );
return S_OK;
}
//-----------------------------------------------------------------------------
// Name: InitGeometry()
// Desc: Creates the scene geometry
//-----------------------------------------------------------------------------
HRESULT InitGeometry()
{
// Create the vertex buffer.
if( FAILED( g_pd3dDevice->CreateVertexBuffer( 50 * 2 * sizeof( CUSTOMVERTEX ),
0, D3DFVF_CUSTOMVERTEX,
D3DPOOL_DEFAULT, &g_pVB, NULL ) ) )
{
return E_FAIL;
}
// Fill the vertex buffer. We are algorithmically generating a cylinder
// here, including the normals, which are used for lighting.
CUSTOMVERTEX* pVertices;
if( FAILED( g_pVB->Lock( 0, 0, ( void** )&pVertices, 0 ) ) )
return E_FAIL;
for( DWORD i = 0; i < 50; i++ )
{
FLOAT theta = ( 2 * D3DX_PI * i ) / ( 50 - 1 );
pVertices[2 * i + 0].position = D3DXVECTOR3( sinf( theta ), -1.0f, cosf( theta ) );
pVertices[2 * i + 0].normal = D3DXVECTOR3( sinf( theta ), 0.0f, cosf( theta ) );
pVertices[2 * i + 1].position = D3DXVECTOR3( sinf( theta ), 1.0f, cosf( theta ) );
pVertices[2 * i + 1].normal = D3DXVECTOR3( sinf( theta ), 0.0f, cosf( theta ) );
}
g_pVB->Unlock();
return S_OK;
}
//-----------------------------------------------------------------------------
// Name: Cleanup()
// Desc: Releases all previously initialized objects
//-----------------------------------------------------------------------------
VOID Cleanup()
{
if( g_pVB != NULL )
g_pVB->Release();
if( g_pd3dDevice != NULL )
g_pd3dDevice->Release();
if( g_pD3D != NULL )
g_pD3D->Release();
}
//-----------------------------------------------------------------------------
// Name: SetupMatrices()
// Desc: Sets up the world, view, and projection transform matrices.
//-----------------------------------------------------------------------------
VOID SetupMatrices()
{
// Set up world matrix
D3DXMATRIXA16 matWorld;
D3DXMatrixIdentity( &matWorld );
D3DXMatrixRotationX( &matWorld, D3DX_PI/4);
g_pd3dDevice->SetTransform( D3DTS_WORLD, &matWorld );
// Set up our view matrix. A view matrix can be defined given an eye point,
// a point to lookat, and a direction for which way is up. Here, we set the
// eye five units back along the z-axis and up three units, look at the
// origin, and define "up" to be in the y-direction.
D3DXVECTOR3 vEyePt( 0.0f, 3.0f,-5.0f );
D3DXVECTOR3 vLookatPt( 0.0f, 0.0f, 0.0f );
D3DXVECTOR3 vUpVec( 0.0f, 1.0f, 0.0f );
D3DXMATRIXA16 matView;
D3DXMatrixLookAtLH( &matView, &vEyePt, &vLookatPt, &vUpVec );
g_pd3dDevice->SetTransform( D3DTS_VIEW, &matView );
// For the projection matrix, we set up a perspective transform (which
// transforms geometry from 3D view space to 2D viewport space, with
// a perspective divide making objects smaller in the distance). To build
// a perpsective transform, we need the field of view (1/4 pi is common),
// the aspect ratio, and the near and far clipping planes (which define at
// what distances geometry should be no longer be rendered).
D3DXMATRIXA16 matProj;
D3DXMatrixPerspectiveFovLH( &matProj, D3DX_PI / 4, 1.0f, 1.0f, 100.0f );
g_pd3dDevice->SetTransform( D3DTS_PROJECTION, &matProj );
}
//-----------------------------------------------------------------------------
// Name: SetupLights()
// Desc: Sets up the lights and materials for the scene.
//-----------------------------------------------------------------------------
VOID SetupLights()
{
// Set up a material. The material here just has the diffuse and ambient
// colors set to yellow. Note that only one material can be used at a time.
D3DMATERIAL9 mtrl;
ZeroMemory( &mtrl, sizeof( D3DMATERIAL9 ) );
mtrl.Diffuse.r = mtrl.Ambient.r = 1.0f;
mtrl.Diffuse.g = mtrl.Ambient.g = 1.0f;
mtrl.Diffuse.b = mtrl.Ambient.b = 0.0f;
mtrl.Diffuse.a = mtrl.Ambient.a = 1.0f;
g_pd3dDevice->SetMaterial( &mtrl );
// Set up a white, directional light, with an oscillating direction.
// Note that many lights may be active at a time (but each one slows down
// the rendering of our scene). However, here we are just using one. Also,
// we need to set the D3DRS_LIGHTING renderstate to enable lighting
D3DXVECTOR3 vecDir;
D3DLIGHT9 light;
ZeroMemory( &light, sizeof( D3DLIGHT9 ) );
light.Type = D3DLIGHT_DIRECTIONAL;
light.Diffuse.r = 1.0f;
light.Diffuse.g = 1.0f;
light.Diffuse.b = 1.0f;
vecDir = D3DXVECTOR3( cosf( timeGetTime() / 350.0f ),
1.0f,
sinf( timeGetTime() / 350.0f ) );
D3DXVec3Normalize( ( D3DXVECTOR3* )&light.Direction, &vecDir );
light.Range = 1000.0f;
g_pd3dDevice->SetLight( 0, &light );
g_pd3dDevice->LightEnable( 0, TRUE );
g_pd3dDevice->SetRenderState( D3DRS_LIGHTING, TRUE );
// Finally, turn on some ambient light.
g_pd3dDevice->SetRenderState( D3DRS_AMBIENT, 0x00202020 );
}
//-----------------------------------------------------------------------------
// Name: Render()
// Desc: Draws the scene
//-----------------------------------------------------------------------------
VOID Render()
{
// Clear the backbuffer and the zbuffer
g_pd3dDevice->Clear( 0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
D3DCOLOR_XRGB( 0, 0, 255 ), 1.0f, 0 );
// Begin the scene
if( SUCCEEDED( g_pd3dDevice->BeginScene() ) )
{
// Setup the lights and materials
SetupLights();
// Setup the world, view, and projection matrices
SetupMatrices();
// Render the vertex buffer contents
g_pd3dDevice->SetStreamSource( 0, g_pVB, 0, sizeof( CUSTOMVERTEX ) );
g_pd3dDevice->SetFVF( D3DFVF_CUSTOMVERTEX );
g_pd3dDevice->DrawPrimitive( D3DPT_TRIANGLESTRIP, 0, 2 * 50 - 2 );
// End the scene
g_pd3dDevice->EndScene();
}
// Present the backbuffer contents to the display
g_pd3dDevice->Present( NULL, NULL, NULL, NULL );
}
//-----------------------------------------------------------------------------
// Name: MsgProc()
// Desc: The window's message handler
//-----------------------------------------------------------------------------
LRESULT WINAPI MsgProc( HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam )
{
switch( msg )
{
case WM_DESTROY:
Cleanup();
PostQuitMessage( 0 );
return 0;
}
return DefWindowProc( hWnd, msg, wParam, lParam );
}
//-----------------------------------------------------------------------------
// Name: WinMain()
// Desc: The application's entry point
//-----------------------------------------------------------------------------
INT WINAPI wWinMain( HINSTANCE hInst, HINSTANCE, LPWSTR, INT )
{
UNREFERENCED_PARAMETER( hInst );
// Register the window class
WNDCLASSEX wc =
{
sizeof( WNDCLASSEX ), CS_CLASSDC, MsgProc, 0L, 0L,
GetModuleHandle( NULL ), NULL, NULL, NULL, NULL,
L"D3D Tutorial", NULL
};
RegisterClassEx( &wc );
// Create the application's window
HWND hWnd = CreateWindow( L"D3D Tutorial", L"D3D Tutorial 04: Lights",
WS_OVERLAPPEDWINDOW, 100, 100, 300, 300,
NULL, NULL, wc.hInstance, NULL );
// Initialize Direct3D
if( SUCCEEDED( InitD3D( hWnd ) ) )
{
// Create the geometry
if( SUCCEEDED( InitGeometry() ) )
{
// Show the window
ShowWindow( hWnd, SW_SHOWDEFAULT );
UpdateWindow( hWnd );
// Enter the message loop
MSG msg;
ZeroMemory( &msg, sizeof( msg ) );
while( msg.message != WM_QUIT )
{
if( PeekMessage( &msg, NULL, 0U, 0U, PM_REMOVE ) )
{
TranslateMessage( &msg );
DispatchMessage( &msg );
}
else
Render();
}
}
}
UnregisterClass( L"D3D Tutorial", wc.hInstance );
return 0;
}
原文地址:http://blog.csdn.net/cq361106306/article/details/39673843