标签:集合 查询 class 文件 其它 关键字 索引 而不是 b-树
在此声明,B-Tree最正确的翻译应该为B树,而不是B-树,也即并没有B-树的说法,二叉树叫Binary Tree,二叉搜索树叫Binary Search Tree(BST)B树叫Balance Tree,简写为B-Tree (注意是这两个单词连起来的意思,不是减号),B+树是B+ Tree。
http://p.blog.csdn.net/images/p_blog_csdn_net/manesking/1.JPG
B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;
如果BST树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;
如:
http://p.blog.csdn.net/images/p_blog_csdn_net/manesking/2.JPG
右边也是一个BST树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用BST树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;
实际使用的BST树都是在原BST树的基础上加上平衡算法,即“平衡二叉树”;如何保持BST树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在BST树中插入和删除结点的策略;
如:(M=3)
http://p.blog.csdn.net/images/p_blog_csdn_net/manesking/4.JPG
B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;
B-树的特性:
B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;
B+的特性:
1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
2.不可能在非叶子结点命中;
3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
4.更适合文件索引系统;
B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;
B树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;
所以,B树分配新结点的概率比B+树要低,空间使用率更高;
标签:集合 查询 class 文件 其它 关键字 索引 而不是 b-树
原文地址:https://www.cnblogs.com/john8169/p/9236601.html