码迷,mamicode.com
首页 > 其他好文 > 详细

[Spark]-RDD

时间:2018-06-28 21:59:06      阅读:210      评论:0      收藏:0      [点我收藏+]

标签:抽象   val   均衡   一个   系统   集中   存储设备   成本   line   

1.什么是RDD
  Resilient Distributed Dataset(RDD),弹性的分布式数据集.
  分布式数据集,是指数据集会以patition块的方式,存储在多个节点上.
  弹性,体现在Spark计算过程中将数据的抽象封装,依此带来的各种重试机制,内存和磁盘切换,高自由的分片函数等
    Hadoop的MapReduce,是基于数据集(物理)的处理,从物理存储上加载数据,操作数据,然后写入物理存储设备.不适用于大量迭代(重用中间成果的IO成本太高)
    Spark的RDD,是基于工作集(将数据集抽象封装)的处理.工作集保留数据集的位置感知,自动容错,负载均衡等优点,还具有抽象封装所带来的弹性,具体体现在:
      自动进行内存和磁盘存储的切换
      节点的弹性:节点基于Lineage的容错(第N个节点出错,会尝试从N-1个节点重新恢复数据)
      Task的弹性:Task失败会自动重试(默认4次)
      Stage的弹性:Stage失败也会进行重试,并且可以重计算失败的数据分片或者只重计算失败的步骤
      CheckPoint和Persist
      数据调度的弹性:DAG TASK和资源管理无关
      数据分片的高度弹性:人工自由设置分片函数和支持Repartition
2.RDD的五大特性
  RDD是由多个Partition组成的一个List
  对RDD的每一个操作,都会对RDD里的每一个Partition执行同一个操作
  每一个RDD都会记录它的依赖(方便重新计算,缓存化或者CheckPoint)
  如果RDD里存放的是Key-Value的形式.则可以传入一个自定义的分区函数进行分区(比如自定义按Key分区,则会将不同RDD的相同Key都集中在一个Partition中)
  计算就近原则.计算会尽可能的放入split所在的节点中(应该是节点集,因为有数据副本)
3.RDD的创建
  RDD的创建两种方式
  3.1 从一个本地的Scala集合创建

    as
  3.2 从一个外部的存储系统中创建

     比如HDFS,HBase等支持任何Hadoop InputFormat的存储系统

    as

[Spark]-RDD

标签:抽象   val   均衡   一个   系统   集中   存储设备   成本   line   

原文地址:https://www.cnblogs.com/NightPxy/p/9240865.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!