码迷,mamicode.com
首页 > 其他好文 > 详细

模式识别(七):MATLAB实现朴素贝叶斯分类器

时间:2014-09-30 10:02:52      阅读:221      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   color   io   os   ar   数据   sp   

本系列文章由云端暮雪编辑,转载请注明出处

http://blog.csdn.net/lyunduanmuxue/article/details/20068781

多谢合作!


今天介绍一种简单高效的分类器——朴素贝叶斯分类器(Naive Bayes Classifier)。


相信学过概率论的同学对贝叶斯这个名字应该不会感到陌生,因为在概率论中有一条重要的公式,就是以贝叶斯命名的,这就是“贝叶斯公式”:


bubuko.com,布布扣


贝叶斯分类器就是基于这条公式发展起来的,之所以这里还加上了朴素二字,是因为该分类器对各类的分布做了一个假设,即不同类的数据样本之间是相互独立的。这样的假设是非常强的,但并不影响朴素贝叶斯分类器的适用性。1997年,微软研究院的 Domingos 和 Pazzani 通过实验证明,即使在其前提假设不成立的情况下,该分类器依然表现出良好的性能。对这一现象的一个解释是,该分类器需要训练的参数比较少,所以能够很好的避免发生过拟合(overfitting)。






模式识别(七):MATLAB实现朴素贝叶斯分类器

标签:style   blog   http   color   io   os   ar   数据   sp   

原文地址:http://blog.csdn.net/yunduanmuxue/article/details/39691913

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!